Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

The existence of quasimeromorphic mappings in dimension 3


Author: Emil Saucan
Journal: Conform. Geom. Dyn. 10 (2006), 21-40
MSC (2000): Primary 30C65, 57R05, 57M60
DOI: https://doi.org/10.1090/S1088-4173-06-00111-1
Published electronically: March 1, 2006
MathSciNet review: 2206314
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a Kleinian group $ G$ acting on $ \mathbb{H}^{3}$ admits a non-constant $ G$-automorphic function, even if it has torsion elements, provided that the orders of the elliptic elements are uniformly bounded. This is accomplished by developing a method for meshing distinct fat triangulations which is fatness preserving. We further show how to adapt the proof to higher dimensions.


References [Enhancements On Off] (What's this?)

  • [Ab] W. Abikoff, Kleinian Groups, lecture notes, The Technion--Israel Institute of Technology, Haifa, Israel, 1996-1997.
  • [Al] J.W. Alexander, Note on Riemmann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372.
  • [Ap] B.N. Apanasov, Klein Groups in Space, Sib. Math. J. 16 (1975), 679-684. MR 0404474 (53:8276)
  • [Bea] A.F. Beardon, The Geometry of Discrete Groups, Springer Verlag, GTM 91, NY, 1982. MR 1393195 (97d:22011)
  • [Ber] M. Berger, Geometry II, Translated from the French by M. Cole and S. Levy. Universitext, Springer-Verlag, Berlin, 1987. MR 0882916 (88a:51001b)
  • [BM] B.H. Bowditch and G. Mess, A 4-Dimensional Kleinian Group, Transaction of the Amer. Math. Soc. 344 (1994), no. 1, 390-405. MR 1240944 (95f:57057)
  • [BrM] R. Brooks and J.P. Matelski, Collars in Kleinian groups, Duke Math. J. 49(1) (1982), 163-182. MR 0650375 (83f:30039)
  • [Ca1] S.S. Cairns, On the triangulation of regular loci, Ann. of Math. 35 (1934), 579-587. MR 1503181
  • [Ca2] S.S. Cairns, Polyhedral approximation to regular loci, Ann. of Math. 37 (1936), 409-419. MR 1503287
  • [Ca3] S.S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 380-390. MR 0149491 (26:6978)
  • [CMS] J. Cheeger, W. Müller, and R. Schrader, On the Curvature of Piecewise Flat Spaces, Comm. Math. Phys. 92 (1984), 405-454. MR 0734226 (85m:53037)
  • [Cox] H.S.M. Coxeter, Regular Polytopes, Second Edition, Macmillan, NY, 1963. MR 0151873 (27:1856)
  • [DM] D.A. Derevin and A.D. Mednikh, Geometric properties of discrete groups acting with fixed points in Lobachevsky space, Soviet Math. Dokl., 37(3) (1988), 614-617. MR 0948799 (90a:30131)
  • [FM] M. Feighn and G. Mess, Conjugacy classes of finite subgroups of Kleinian groups, Amer. J. of Math. 113 (1991), 179-188. MR 1087807 (92a:57042)
  • [GM1] F.W. Gehring and G.J. Martin, Commutators, collars and the geometry of Möbius groups, J. Anal. Math. 63 (1994), 174-219. MR 1269219 (96c:30040)
  • [GM2] F.W. Gehring and G.J. Martin, On the Margulis constant for Kleinian groups, I, Ann. Acad. Sci. Fenn. 21 (1996), 439-462. MR 1404096 (97f:30065)
  • [GMMR] F.W. Gehring, C. Maclachlan, G.J. Martin, and A.W. Reed, Arithmeticity, Discreteness and Volume, Trans. Amer. Math. Soc. 349 (1997), 3611-3643. MR 1433117 (98d:57022)
  • [H] E. Hamilton, Geometrical finiteness for hyperbolic orbifolds, Topology 37(3) (1998), 635-657. MR 1604903 (99h:57027)
  • [Hu] J.F.P. Hudson, Piecewise Linear Topology, Math. Lect. Notes Series, Benjamin, NY, 1969. MR 0248844 (40:2094)
  • [J] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. of Math. 98(3) (1976), 739-749. MR 0427627 (55:658)
  • [KP] M.E. Kapovitch and L. Potyagailo, On the Absence of Ahlfors and Sullivan theorems for Kleinian groups in higher dimensions, Sib. Math. J., Vol. 32, No. 1, 1991, pp. 227-237. MR 1138441 (93g:30064)
  • [KP1] M.E. Kapovitch and L. Potyagailo, On the absence of Ahlfors' finiteness theorem for Kleinian groups in dimension 3, Topology Appl. 40, 1991, pp. 83-91. MR 1114093 (92j:57023)
  • [Med] A.D. Mednikh, Automorphism groups of the three-dimensional hyperbolic manifolds, Soviet Math. Dokl. 32(3) (1985), 633-636.
  • [Mor] J.W. Morgan, On Thurston's Uniformization Theorem for Three-Dimensional Manifolds, in The Smith Conjecture (Morgan, J.W. and Bass, H. ed.), Academic Press, NY, 1984, 37-126.
  • [MS1] O. Martio and U. Srebro, Automorphic quasimeromorphic mappings in $ R^{n}$, Acta Math. 195 (1975), 221-247. MR 0435388 (55:8348)
  • [MS2] O. Martio and U. Srebro, On the existence of automorphic quasimeromorphic mappings in $ R^{n}$, Ann. Acad. Sci. Fenn., SeriesI Math. 3 (1977), 123-130. MR 0585312 (58:28486)
  • [Ms] B. Maskit, Kleinian Groups, Springer Verlag, GDM 287, NY, 1987. MR 0959135 (90a:30132)
  • [My] V. Mayer, Uniformly Quasiregular Mappings of Lattès Type, Conformal Geometry and Dynamics 1 (1997), 104-111. MR 1482944 (98j:30017)
  • [Mun] J.R. Munkres, Elementary Differential Topology (rev. ed.) Princeton University Press, Princeton, NJ, 1966. MR 0198479 (33:6637)
  • [NW] P.J. Nicholls and P.L. Waterman, The boundary of convex fundamental domains for Fuchsian groups, Ann. Acad. Sci. Fenn., Ser A I Math. 15(1) (1990), 1-25. MR 1050778 (91h:30066)
  • [Pe] K. Peltonen, On the existence of quasiregular mappings, Ann. Acad. Sci. Fenn., SeriesI Math., Dissertationes, 1992. MR 1165363 (93h:30031)
  • [Rat] J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, GTM 194, Springer Verlag, NY, 1994. MR 1299730 (95j:57011)
  • [S1] E. Saucan, The Existence of Quasimeromorphic Mappings, Ann. Acad. Sci. Fenn., Ser A I Math, 31, (2006), 131-142.
  • [S2] E. Saucan, Note on a theorem of Munkres, Mediterr. j. math 2(2) (2005), 215-229.
  • [S3] E. Saucan, in preparation.
  • [Som] D.M.Y. Sommerville, An Introduction to the Geometry of $ N$ Dimensions, Dover Publications, NY, 1958. MR 0100239 (20:6672)
  • [Spi V] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. V, Publish or Perish, Boston, MA, 1975. MR 0394453 (52:15254b)
  • [Sr] U. Srebro, Non-existence of Automorphic Quasimeromorphic Mappings, Analysis and Topology, World Sci. Publishing, River Edge, NJ, 1998. MR 1667838 (99j:30027)
  • [SA] E. Saucan and E. Apleboim, Quasiconformal Fold Elimination for Seaming and Tomography, in preparation.
  • [Th] W. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, (S. Levy, ed.), Princeton University Press, Princeton, NJ, 1997. MR 1435975 (97m:57016)
  • [Tu] P. Tukia, Automorphic Quasimeromorphic Mappings for Torsionless Hyperbolic Groups, Ann. Acad. Sci. Fenn. 10 (1985), 545-560. MR 0802519 (86k:30023)
  • [V] J. Väisalä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag, Berlin-Heidelberg-New-York, 1971. MR 0454009 (56:12260)
  • [Wh] J.H.C. Whitehead, On $ \mathcal{C}^{1}$-complexes, Ann. of Math. 41 (1940), 809-824. MR 0002545 (2:73d)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C65, 57R05, 57M60

Retrieve articles in all journals with MSC (2000): 30C65, 57R05, 57M60


Additional Information

Emil Saucan
Affiliation: Departments of Mathematics and Electrical Engineering, Technion, Haifa, Israel
Email: semil@tx.technion.ac.il, semil@ee.technion.ac.il

DOI: https://doi.org/10.1090/S1088-4173-06-00111-1
Keywords: Automorphic quasimeromorphic mapping, fat triangulation
Received by editor(s): December 1, 2003
Received by editor(s) in revised form: January 20, 2006
Published electronically: March 1, 2006
Dedicated: For Meir, who insisted
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society