Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Fiber structure and local coordinates for the Teichmüller space of a bordered Riemann surface


Authors: David Radnell and Eric Schippers
Journal: Conform. Geom. Dyn. 14 (2010), 14-34
MSC (2010): Primary 30F60, 58B12; Secondary 81T40
DOI: https://doi.org/10.1090/S1088-4173-10-00206-7
Published electronically: February 11, 2010
MathSciNet review: 2593332
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the infinite-dimensional Teichmüller space of a Riemann surface whose boundary consists of $ n$ closed curves is a holomorphic fiber space over the Teichmüller space of an $ n$-punctured surface. Each fiber is a complex Banach manifold modeled on a two-dimensional extension of the universal Teichmüller space. The local model of the fiber, together with the coordinates from internal Schiffer variation, provides new holomorphic local coordinates for the infinite-dimensional Teichmüller space.


References [Enhancements On Off] (What's this?)

  • 1. Ahlfors, L. V. and Sario, L., Riemann surfaces, Princeton Mathematical Series, no. 26, Princeton University Press, Princeton, NJ, 1960. MR 0114911 (22:5729)
  • 2. Chae, S. B., Holomorphy and calculus in normed spaces. With an appendix by Angus E. Taylor. Monographs and Textbooks in Pure and Applied Mathematics, 92. Marcel Dekker, Inc., New York, 1985. MR 788158 (86j:46044)
  • 3. Gardiner, F. P., Schiffer's interior variation and quasiconformal mapping. Duke Math. J. 42 (1975), 371-380. MR 0382637 (52:3519)
  • 4. Grosse-Erdmann, K.-G., A weak criterion for vector-valued holomorphy, Math. Proc. Cambridge Philos. Soc., 169 (2004), no. 2, 399-411. MR 2040581 (2005a:30079)
  • 5. Hubbard, J. H., Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1., Matrix Editions, Ithaca, New York, 2006. MR 2245223 (2008k:30055)
  • 6. Lang, S., Differential manifolds. Second edition. Springer-Verlag, New York, 1985. MR 772023 (85m:58001)
  • 7. Lehto, O., Quasiconformal mappings and singular integrals. Instituto Nazionale di Alta Matematica., Symposia Mathematica XVIII 429-453, Academic Press 1976. MR 0492241 (58:11387)
  • 8. Lehto, O., Univalent functions and Teichmüller spaces. Graduate Texts in Mathematics 109 Springer-Verlag, New York, 1987. MR 867407 (88f:30073)
  • 9. Lehto, O. and Virtanen, K. I., Quasiconformal mappings in the plane. 2nd edition. Die Grundlehren der mathematischen Wissenshcaften, Band 126. Springer-Verlag, New York-Heidelberg, 1973. MR 0344463 (49:9202)
  • 10. Mujica, J., Complex Analysis in Banach Spaces. North Holland, 1986. MR 842435 (88d:46084)
  • 11. Nag, S., The complex analytic theory of Teichmüller spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988. MR 927291 (89f:32040)
  • 12. Radnell, D., Schiffer Variation in Teichmüller space, Determinant Line Bundles and Modular Functors, PhD Thesis, Rutgers University, New Brunswick, NJ, 2003.
  • 13. Radnell, D. and Schippers, E., Quasisymmetric sewing in rigged Teichmüller space, Commun. Contemp. Math. 8 (2006) no. 4, 481-534. arXiv:math-ph/0507031. MR 2258875 (2007f:32015)
  • 14. Radnell, D. and Schippers, E., A complex structure on the set of quasiconformally extendible non-overlapping maps into a Riemann surface, J. Anal. Math. 108 (2009) no. 1, 277-291. arXiv:0803.3211. MR 2544761
  • 15. Radnell, D. and Schippers, E., The semigroup of rigged annuli and the Teichmüller space of the annulus. Preprint, 2009. MR 2544761
  • 16. Segal, G., The definition of conformal field theory, Topology, Geometry and Quantum Field Theory (U. Tillmann, ed.), London Mathematical Society Lecture Note Series, vol. 308, Cambridge University Press, 2004; original preprint 1988, pp. 421-576. MR 2079383 (2005h:81334)
  • 17. Teo, L.-P., Velling-Kirillov metric on the universal Teichmüller curve. J. Anal. Math. 93 (2004), 271-307. MR 2110331 (2005k:32014)
  • 18. Takhtajan, L. A. and Teo, L-P., Weil-Petersson metric on the universal Teichmüller space. Mem. Amer. Math. Soc., (2006). MR 2251887 (2007e:32011)
  • 19. Słodkowski, Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., 111(2), (1991), 347-355. MR 1037218 (91f:58078)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30F60, 58B12, 81T40

Retrieve articles in all journals with MSC (2010): 30F60, 58B12, 81T40


Additional Information

David Radnell
Affiliation: Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
Email: dradnell@aus.edu

Eric Schippers
Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Email: eric_schippers@umanitoba.ca

DOI: https://doi.org/10.1090/S1088-4173-10-00206-7
Keywords: Teichm\"uller spaces, quasiconformal mappings, sewing, rigged Riemann surfaces, conformal field theory
Received by editor(s): June 17, 2009
Published electronically: February 11, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society