Conformal Geometry and Dynamics

ISSN 1088-4173

 

 

Shapes of tetrahedra with prescribed cone angles


Authors: Ahtziri González and Jorge L. López-López
Journal: Conform. Geom. Dyn. 15 (2011), 50-63
MSC (2010): Primary 51M20; Secondary 58D17, 51M10, 51M25
Published electronically: June 7, 2011
MathSciNet review: 2833472
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given real numbers $ 4\pi>\theta_0\geq\theta_1\geq\theta_2\geq\theta_3>0$ so that $ \sum_{j=0}^3\theta_j=4\pi$, we provide a detailed description of the space of flat metrics on the 2-sphere with 4 conical points of cone angles $ \theta_0,\theta_1,\theta_2,\theta_3$, endowed with a geometric structure arising from the area function.


References [Enhancements On Off] (What's this?)

  • 1. A. H. Cruz-Cota, The moduli space of hex spheres, http://arxiv.org/abs/1010.5235, 2010.
  • 2. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651
  • 3. F. Fillastre, From spaces of polygons to spaces of polyhedra following Bavard, Ghys and Thurston, http://fillastre.u-cergy.fr/articles.html, 2009.
  • 4. Herman Gluck, Kenneth Krigelman, and David Singer, The converse to the Gauss-Bonnet theorem in PL, J. Differential Geometry 9 (1974), 601–616. MR 0390962
  • 5. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
  • 6. W. Klingenberg, Riemannian geometry, de Gruyter Stud. Math., vol. 1, de Gruyter, 1982.
  • 7. Sadayoshi Kojima, Complex hyperbolic cone structures on the configuration spaces, Rend. Istit. Mat. Univ. Trieste 32 (2001), no. suppl. 1, 149–163 (2002). Dedicated to the memory of Marco Reni. MR 1893396
  • 8. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
  • 9. William P. Thurston, Shapes of polyhedra and triangulations of the sphere, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 511–549. MR 1668340, 10.2140/gtm.1998.1.511
  • 10. Marc Troyanov, On the moduli space of singular Euclidean surfaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 507–540. MR 2349679, 10.4171/029-1/13
  • 11. William A. Veech, Flat surfaces, Amer. J. Math. 115 (1993), no. 3, 589–689. MR 1221838, 10.2307/2375075

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 51M20, 58D17, 51M10, 51M25

Retrieve articles in all journals with MSC (2010): 51M20, 58D17, 51M10, 51M25


Additional Information

Ahtziri González
Affiliation: CIMAT, Mineral de Valenciana, C.P. 36240, Guanajuato, Gto., Mexico
Email: ahtziri@cimat.mx

Jorge L. López-López
Affiliation: Facultad de Ciencias Físico-matemáticas, UMSNH, Ciudad Universitaria, C.P. 58040, Morelia, Mich., Mexico
Email: jllopez@umich.mx

DOI: http://dx.doi.org/10.1090/S1088-4173-2011-00225-6
Received by editor(s): December 7, 2010
Published electronically: June 7, 2011
Additional Notes: The study was partially supported by funding from the UMSNH (by means of a project of the CIC) and the SEP (by means of the Red Temática de Colaboración “Álgebra, topología y análisis”).
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.