Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Triviality of fibers for Misiurewicz parameters in the exponential family


Author: Anna Miriam Benini
Journal: Conform. Geom. Dyn. 15 (2011), 133-151
MSC (2010): Primary 37F10, 37F20, 37F45
DOI: https://doi.org/10.1090/S1088-4173-2011-00227-X
Published electronically: September 20, 2011
MathSciNet review: 2833476
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the family of holomorphic maps $ e^z+c$ and show that fibers of postsingularly finite parameters are trivial. This can be considered as the first and simplest class of non-escaping parameters for which we can obtain results about triviality of fibers in the exponential family.


References [Enhancements On Off] (What's this?)

  • [BR] Noël Baker, Phil J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 4-77. MR 752391 (86d:58065)
  • [Be] Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151-188. MR 1216719 (94c:30033)
  • [B et al.] Clara Bodelon, Robert L. Devaney, Lisa R. Goldberg, Michael Hayes, John H. Hubbard, Gareth Roberts, Dynamical convergence of polynomials to the exponential, J. Differ. Equations Appl. 6 (2000), no. 3, 275-307. MR 1785056 (2001f:37055)
  • [CG] Lennart Carleson, Theodore W. Gamelin, Complex Dynamics, Springer (1993). MR 1230383 (94h:30033)
  • [DK] Robert L. Devaney, Michael Krych, Dynamics of Exp(z), Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35-52. MR 758892 (86b:58069)
  • [DH] Adrien Douady, John H. Hubbard, Étude dynamique des polynômes complexes, Prépublications mathématiques d'Orsay (1984/1985), no. 2/4.
  • [EL] Alexandre Eremenko, Mikhail Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020. MR 1196102 (93k:30034)
  • [FRS] Markus Förster, Lasse Rempe, Dierk Schleicher, Classification of escaping exponential maps, Proc. Amer. Math. Soc. 136 (2008), no. 2, 651-663. MR 2358507 (2008j:37100)
  • [FS] Markus Förster, Dierk Schleicher, Parameter rays in the space of exponential maps, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 515-544. MR 2486782 (2010b:37125)
  • [GM] Lisa Goldberg, John Milnor, Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51-98. MR 1209913 (95d:58107)
  • [HSS] John H. Hubbard, Dierk Schleicher, Mitsuhiro Shishikura, Exponential Thurston maps and limits of quadratic differentials, J. Amer. Math. Soc. 22 (2009), no. 1, 77-117. MR 2449055 (2010c:37100)
  • [LSV] Bastian Laubner, Dierk Schleicher, Vlad Vicol, A combinatorial classification of postsingularly finite complex exponential maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 663-682. MR 2429858 (2009f:37053)
  • [McM] Curtis McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies (1994), Princeton University Press. MR 1312365 (96b:58097)
  • [Mi1] John Milnor, Periodic orbits, external rays and the Mandelbrot set: an expository account, Astérisques 261 (2000), xiii, 277-333. MR 1755445 (2002e:37067)
  • [Mi] John Milnor, Dynamics in one complex variable, Annals of Mathematics Studies (2006), Princeton University Press. MR 2193309 (2006g:37070)
  • [PR] Carsten L. Petersen, Gustav Ryd, Convergence of rational rays in parameter spaces, in: Tan Lei et al., The Mandelbrot Set: Theme and Variations, Cambridge University Press (2000). MR 1765088 (2001f:37057)
  • [R0] Lasse Rempe, Dynamics of exponential maps, Doctoral Thesis, Christian-Albrechts-Universität Kiel (2003), http://e-diss.uni-kiel.de/diss781/.
  • [R1] Lasse Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2639-2648. MR 2213743 (2008d:37073)
  • [R2] Lasse Rempe, Topological dynamics of exponential maps, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939-1975. MR 2279273 (2008c:37069)
  • [RS1] Lasse Rempe, Dierk Schleicher, Combinatorics of bifurcations in exponential parameter space, in: Phil Rippon, Gwyneth Stallard, Transcendental Dynamics and Complex Analysis, London Mathematical Society Lecture Note Series 348 Cambridge University Press (2008), 317-370; arXiv:math/0408011 [math.DS]. MR 2458808 (2010e:37059)
  • [RS2] Lasse Rempe, Dierk Schleicher, Bifurcation loci of exponential maps and quadratic polynomials: local connectivity, triviality of fibers and density of hyperbolicity, in: Mikhail Lyubich et al., Fields Institute Communications Volume 53: Holomorphic dynamics and renormalization. A volume in honor of John Milnor's 75th birthday (2008), 177-196; arXiv:0805.1658 [math.DS]. MR 2477423 (2010b:37133)
  • [RvS] Lasse Rempe, Sebastian van Strien, Density of hyperbolicity for classes of real transcendental entire functions and circle maps, arXiv:1005.4627v2 [math.DS].
  • [S0] Dierk Schleicher, On the dynamics of iterated exponential maps, Habilitation Thesis, TU Munchen (1999).
  • [S1] Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, Fractal geometry and applications: a jubilee of Benoit Mandelbrot. Part 1, 477-517, Proc. Sympos. Pure Math., 72, Part 1, Amer. Math. Soc., Providence, RI (2004). MR 2112117 (2006b:37088)
  • [SZ1] Dierk Schleicher, Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380-400. MR 1956142 (2003k:37067)
  • [SZ2] Dierk Schleicher, Johannes Zimmer, Periodic Points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327-354. MR 1996442 (2004e:37068)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F10, 37F20, 37F45

Retrieve articles in all journals with MSC (2010): 37F10, 37F20, 37F45


Additional Information

Anna Miriam Benini
Affiliation: Department of Mathematics, Stony Brook University, Building 5-116, Stony Brook, New York 11794

DOI: https://doi.org/10.1090/S1088-4173-2011-00227-X
Received by editor(s): September 9, 2009
Received by editor(s) in revised form: March 15, 2010, May 17, 2010, September 29, 2010, October 14, 2010, October 19, 2010, and May 5, 2011
Published electronically: September 20, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society