Lines of minima with no end in Thurston's boundary of Teichmüller space

Author:
Yuki Iguchi

Journal:
Conform. Geom. Dyn. **16** (2012), 22-43

MSC (2010):
Primary 30F45, 30F60, 32G15, 57M15; Secondary 57M50, 32G15, 30F60, 30F45

Published electronically:
March 7, 2012

MathSciNet review:
2890254

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be two measured laminations which fill up a hyperbolic surface. Kerckhoff [Duke Math. J. **65** (1992), 187-213] defines a line of minima as a family of surfaces where convex combinations of the hyperbolic length functions of and are minimum. This is a proper curve in the Teichmüller space. We show that there exists a line of minima which does not converge in the Thurston compactification of the Teichmüller space of a compact Riemann surface. We also show that the limit set of the line of minima is contained in a simplex on the Thurston boundary.

**[Bu]**Peter Buser,*Geometry and spectra of compact Riemann surfaces*, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR**1183224****[CRS1]**Young-Eun Choi, Kasra Rafi, and Caroline Series,*Lines of minima are uniformly quasigeodesic*, Pacific J. Math.**237**(2008), no. 1, 21–44. MR**2415205**, 10.2140/pjm.2008.237.21**[CRS2]**Young-Eun Choi, Kasra Rafi, and Caroline Series,*Lines of minima and Teichmüller geodesics*, Geom. Funct. Anal.**18**(2008), no. 3, 698–754. MR**2438996**, 10.1007/s00039-008-0675-6**[DS]**Raquel Díaz and Caroline Series,*Limit points of lines of minima in Thurston’s boundary of Teichmüller space*, Algebr. Geom. Topol.**3**(2003), 207–234 (electronic). MR**1997320**, 10.2140/agt.2003.3.207**[FLP]***Travaux de Thurston sur les surfaces*, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR**568308****[GM]**Frederick P. Gardiner and Howard Masur,*Extremal length geometry of Teichmüller space*, Complex Variables Theory Appl.**16**(1991), no. 2-3, 209–237. MR**1099913****[Ke]**Steven P. Kerckhoff,*Lines of minima in Teichmüller space*, Duke Math. J.**65**(1992), no. 2, 187–213. MR**1150583**, 10.1215/S0012-7094-92-06507-0**[Kh]**A. Ya. Khinchin,*Continued fractions*, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR**1451873****[L]**Anna Lenzhen,*Teichmüller geodesics that do not have a limit in 𝒫ℳℱ*, Geom. Topol.**12**(2008), no. 1, 177–197. MR**2377248**, 10.2140/gt.2008.12.177**[Le]**Gilbert Levitt,*Foliations and laminations on hyperbolic surfaces*, Topology**22**(1983), no. 2, 119–135. MR**683752**, 10.1016/0040-9383(83)90023-X**[M]**Bernard Maskit,*Comparison of hyperbolic and extremal lengths*, Ann. Acad. Sci. Fenn. Ser. A I Math.**10**(1985), 381–386. MR**802500**, 10.5186/aasfm.1985.1042**[Ma]**Howard Masur,*Two boundaries of Teichmüller space*, Duke Math. J.**49**(1982), no. 1, 183–190. MR**650376****[Mi]**Yair N. Minsky,*Extremal length estimates and product regions in Teichmüller space*, Duke Math. J.**83**(1996), no. 2, 249–286. MR**1390649**, 10.1215/S0012-7094-96-08310-6**[St]**Kurt Strebel,*Quadratic differentials*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR**743423****[Wo]**Scott Wolpert,*The length spectra as moduli for compact Riemann surfaces*, Ann. of Math. (2)**109**(1979), no. 2, 323–351. MR**528966**, 10.2307/1971114

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (2010):
30F45,
30F60,
32G15,
57M15,
57M50,
32G15,
30F60,
30F45

Retrieve articles in all journals with MSC (2010): 30F45, 30F60, 32G15, 57M15, 57M50, 32G15, 30F60, 30F45

Additional Information

**Yuki Iguchi**

Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

Email:
iguchi.y.ac@m.titech.ac.jp

DOI:
http://dx.doi.org/10.1090/S1088-4173-2012-00240-8

Keywords:
Teichmüller space,
Thurston’s boundary,
Teichmüller geodesic,
line of minima.

Received by editor(s):
August 2, 2011

Published electronically:
March 7, 2012

Additional Notes:
The author is partially supported by “Global COE: Computationism as a Foundation for the Sciences”.

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.