Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173



Boundary values of the Thurston pullback map

Author: Russell Lodge
Journal: Conform. Geom. Dyn. 17 (2013), 77-118
MSC (2010): Primary 37F20
Published electronically: June 6, 2013
MathSciNet review: 3063048
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any Thurston map with exactly four postcritical points, we present an algorithm to compute the Weil-Petersson boundary values of the corresponding Thurston pullback map. This procedure is carried out for the Thurston map $ f(z)=\frac {3z^2}{2z^3+1}$ originally studied by Buff, et al. The dynamics of this boundary map are investigated and used to solve the analogue of Hubbard's Twisted Rabbit problem for $ f$.

References [Enhancements On Off] (What's this?)

  • [1] Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Acta Math. 197 (2006), no. 1, 1-51. MR 2285317 (2008c:37072),
  • [2] Laurent Bartholdi and Volodymyr V. Nekrashevych, Iterated monodromy groups of quadratic polynomials. I, Groups Geom. Dyn. 2 (2008), no. 3, 309-336. MR 2415302 (2009d:37074),
  • [3] Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82. MR 0375281 (51 #11477)
  • [4] Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. Translated, revised and expanded from the 2002 Russian original. MR 2396717 (2009c:20001)
  • [5] Henk Bruin, Alexandra Kaffl, and Dierk Schleicher, Existence of quadratic Hubbard trees, Fund. Math. 202 (2009), no. 3, 251-279. MR 2476617 (2010c:37099),
  • [6] Xavier Buff, Adam Epstein, Sarah Koch, and Kevin Pilgrim, On Thurston's pullback map, Complex Dynamics: Families and Friends, A K Peters, Wellesley, MA, 2009, pp. 561-583. MR 2508269 (2010g:37071),
  • [7] J. W. Cannon, W. J. Floyd, and W. R. Parry, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001), 153-196 (electronic). MR 1875951 (2002j:52021),
  • [8] J. W. Cannon, W. J. Floyd, W. R. Parry, and K. M. Pilgrim, Nearly Euclidean Thurston maps, Conform. Geom. Dyn. 16 (2012), 209-255. MR 2958932,
  • [9] Adrien Douady and John H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263-297. MR 1251582 (94j:58143),
  • [10] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125 (2012h:57032)
  • [11] Morris W. Hirsch, Differential topology, Springer-Verlag, New York, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362 (56 #6669)
  • [12] John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223 (2008k:30055)
  • [13] G. Kelsey.
    Mega-bimodules of topological polynomials: Sub-hyperbolicity and Thurston obstructions., 2011.
  • [14] S. Koch.
    Teichmüller theory and critically finite endomorphisms.
  • [15] S. Koch, K. Pilgrim, and N. Selinger.
    Pullback invariants of Thurston maps.
    Preprint, 2012.
  • [16] Serge Lang, Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 222, Springer-Verlag, Berlin, 1995. With appendixes by D. Zagier and Walter Feit; Corrected reprint of the 1976 original. MR 1363488 (96g:11037)
  • [17] R. Lodge.
    Boundary values of the Thurston pullback map.
    PhD Thesis.
  • [18] Curt McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2) 125 (1987), no. 3, 467-493. MR 890160 (88i:58082),
  • [19] D. Meyer.
    Unmating of rational maps, sufficient criteria and examples.
    arXiv:1110.6784v1, 2011.
  • [20] John Milnor, Pasting together Julia sets: a worked out example of mating, Experiment. Math. 13 (2004), no. 1, 55-92. MR 2065568 (2005c:37087)
  • [21] John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9-43. MR 2348953 (2009h:37090),
  • [22] Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005. MR 2162164 (2006e:20047)
  • [23] Volodymyr Nekrashevych, Combinatorics of polynomial iterations, Complex Dynamics: Families and Friends, A K Peters, Wellesley, MA, 2009, pp. 169-214. MR 2508257 (2011k:37082),
  • [24] K. Pilgrim.
    An algebraic formulation of Thurston's characterization of rational functions.
    To appear, special issue of Annales de la Faculte des Sciences de Toulouse, 2010.
  • [25] N. Selinger.
    Thurston's pullback map on the augmented Teichmüller space and applications.
    Inventiones mathematicae, pages 1-32, 2011.
  • [26] Scott A. Wolpert, The Weil-Petersson metric geometry, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 47-64. MR 2497791 (2010i:32012),

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F20

Retrieve articles in all journals with MSC (2010): 37F20

Additional Information

Russell Lodge
Affiliation: Department of Mathematics, Jacobs University, Bremen, Germany

Received by editor(s): November 30, 2012
Published electronically: June 6, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society