Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Classification of subdivision rules for geometric groups of low dimension


Author: Brian Rushton
Journal: Conform. Geom. Dyn. 18 (2014), 171-191
MSC (2010): Primary 20F65, 05C25, 57M50
DOI: https://doi.org/10.1090/S1088-4173-2014-00269-0
Published electronically: October 7, 2014
MathSciNet review: 3266238
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Subdivision rules create sequences of nested cell structures on CW-complexes, and they frequently arise from groups. In this paper, we develop several tools for classifying subdivision rules. We give a criterion for a subdivision rule to represent a Gromov hyperbolic space, and show that a subdivision rule for a hyperbolic group determines the Gromov boundary. We give a criterion for a subdivision rule to represent a Euclidean space of dimension less than 4. We also show that Nil and Sol geometries cannot be modeled by subdivision rules. We use these tools and previous theorems to classify the geometry of subdivision rules for low-dimensional geometric groups by the combinatorial properties of their subdivision rules.


References [Enhancements On Off] (What's this?)

  • [1] Roger C. Alperin, Solvable groups of exponential growth and HNN extensions, Groups--Korea '98 (Pusan), de Gruyter, Berlin, 2000, pp. 1-5. MR 1751083 (2001e:20030)
  • [2] J. W. Cannon, W. J. Floyd, and W. R. Parry, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001), 153-196 (electronic). MR 1875951 (2002j:52021), https://doi.org/10.1090/S1088-4173-01-00055-8
  • [3] James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155-234. MR 1301392 (95k:30046), https://doi.org/10.1007/BF02398434
  • [4] J. W. Cannon, W. J. Floyd, and W. R. Parry, Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 265-304. MR 1724092 (2000k:20057)
  • [5] J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. I, Conform. Geom. Dyn. 10 (2006), 63-99 (electronic). MR 2218641 (2007c:30048), https://doi.org/10.1090/S1088-4173-06-00126-3
  • [6] J. W. Cannon, W. J. Floyd, and W. R. Parry, Expansion complexes for finite subdivision rules. II, Conform. Geom. Dyn. 10 (2006), 326-354 (electronic). MR 2268483 (2007i:30070), https://doi.org/10.1090/S1088-4173-06-00127-5
  • [7] J. W. Cannon and E. L. Swenson, Recognizing constant curvature discrete groups in dimension $ 3$, Trans. Amer. Math. Soc. 350 (1998), no. 2, 809-849. MR 1458317 (98i:57023), https://doi.org/10.1090/S0002-9947-98-02107-2
  • [8] J. W. Cannon, W. J. Floyd, and W. R. Parry, Conformal modulus: the graph paper invariant or the conformal shape of an algorithm, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 71-102. MR 1714840 (2000h:57029)
  • [9] Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $ 3$-manifolds, Invent. Math. 118 (1994), no. 3, 441-456. MR 1296353 (96f:57011), https://doi.org/10.1007/BF01231540
  • [10] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994 (92f:57003)
  • [11] Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869 (2001i:20081)
  • [12] Cornelia Drutu and Michael Kapovich Preface, Lectures on geometric group theory, (2013), A book to be published in the AMS series ``Colloquium Publications'' in 2015.
  • [13] D. Epstein, M.S. Paterson, J.W. Cannon, D.F. Holt, S.V. Levy, and W. P. Thurston, Word processing in groups, AK Peters, Ltd., 1992.
  • [14] Benson Farb and Lee Mosher, Problems on the geometry of finitely generated solvable groups, Crystallographic groups and their generalizations (Kortrijk, 1999), Contemp. Math., vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 121-134. MR 1796128 (2001j:20064), https://doi.org/10.1090/conm/262/04170
  • [15] F. T. Farrell and L. E. Jones, The lower algebraic $ K$-theory of virtually infinite cyclic groups, $ K$-Theory 9 (1995), no. 1, 13-30. MR 1340838 (96e:19003), https://doi.org/10.1007/BF00965457
  • [16] Eric M. Freden, Negatively curved groups have the convergence property. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 333-348. MR 1346817 (96g:20054)
  • [17] David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447-510. MR 1189862 (93m:20065), https://doi.org/10.2307/2946597
  • [18] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [19] Mikhael Gromov, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, vol. 1, 1984, p. 2.
  • [20] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. MR 919829 (89e:20070), https://doi.org/10.1007/978-1-4613-9586-7_3
  • [21] Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39-93. MR 1921706 (2004e:20075), https://doi.org/10.1090/conm/296/05068
  • [22] Avinoam Mann, How groups grow, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
  • [23] Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159 (2002).
  • [24] -, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109 (2003).
  • [25] Brian Rushton, Constructing subdivision rules from alternating links, Conform. Geom. Dyn. 14 (2010), 1-13. MR 2579862 (2011f:57035), https://doi.org/10.1090/S1088-4173-09-00205-7
  • [26] Brian Rushton, Constructing subdivision rules from polyhedra with identifications, Algebr. Geom. Topol. 12 (2012), no. 4, 1961-1992. MR 2994827, https://doi.org/10.2140/agt.2012.12.1961
  • [27] Brian Rushton, A finite subdivision rule for the n-dimensional torus, Geometriae Dedicata (2012), 1-12 (English).
  • [28] Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318 (2006a:52022)
  • [29] Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1-54. MR 961162 (89m:30047), https://doi.org/10.1515/crll.1988.391.1
  • [30] Jussi Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), no. 3, 187-231. MR 2164775 (2006j:53055), https://doi.org/10.1016/j.exmath.2005.01.010

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 20F65, 05C25, 57M50

Retrieve articles in all journals with MSC (2010): 20F65, 05C25, 57M50


Additional Information

Brian Rushton
Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Email: brian.rushton@temple.edu

DOI: https://doi.org/10.1090/S1088-4173-2014-00269-0
Received by editor(s): April 7, 2014
Received by editor(s) in revised form: May 1, 2014, May 19, 2014, and June 22, 2014
Published electronically: October 7, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society