Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Hardy-Orlicz Spaces of conformal densities


Author: Sita Benedict
Journal: Conform. Geom. Dyn. 19 (2015), 146-158
MSC (2010): Primary 30C35, 30H10
DOI: https://doi.org/10.1090/ecgd/280
Published electronically: May 26, 2015
MathSciNet review: 3350023
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define and prove characterizations of Hardy-Orlicz spaces of conformal densities.


References [Enhancements On Off] (What's this?)

  • [1] Kari Astala and Pekka Koskela, $ H^p$-theory for quasiconformal mappings, Pure Appl. Math. Q. 7 (2011), no. 1, 19-50. MR 2900163, https://doi.org/10.4310/PAMQ.2011.v7.n1.a3
  • [2] Albert Baernstein II, Daniel Girela, and José Ángel Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois J. Math. 48 (2004), no. 3, 837-859. MR 2114254 (2005i:30085)
  • [3] Mario Bonk, Pekka Koskela, and Steffen Rohde, Conformal metrics on the unit ball in Euclidean space, Proc. London Math. Soc. (3) 77 (1998), no. 3, 635-664. MR 1643421 (99f:30033), https://doi.org/10.1112/S0024611598000586
  • [4] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948 (58 #17690)
  • [5] Peter L. Duren, Theory of $ H^{p}$ Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655 (42 #3552)
  • [6] F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353-361. MR 0148884 (26 #6381)
  • [7] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439. MR 1545260, https://doi.org/10.1007/BF01180596
  • [8] W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586 (21 #7302)
  • [9] Pekka Koskela and Sita Benedict, Intrinsic Hardy-Orlicz spaces of conformal mappings, Bull. Lond. Math. Soc. 47 (2015), no. 1, 75-84. MR 3312966, https://doi.org/10.1112/blms/bdu097
  • [10] F. Nevanlinna and R. Nevanlinna, Über die eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie,
    Acta Soc. Sci. Fenn. 50 (1922), no. 5.
  • [11] Ch. Pommerenke, Über die Mittelwerte und Koeffizienten multivalenter Funktionen,
    Math. Annalen 145 (1962), 185-296.
  • [12] H. Prawitz, Über Mittelwerte analytischer Funktionen,
    Ark. Mat. Astr. Fys. 20A (1927), 1-12.
  • [13] Jussi Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009 (56 #12260)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30C35, 30H10

Retrieve articles in all journals with MSC (2010): 30C35, 30H10


Additional Information

Sita Benedict
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014, Finland
Email: sita.c.benedict@jyu.fi

DOI: https://doi.org/10.1090/ecgd/280
Keywords: Hardy spaces, Hardy-Orlicz, conformal densities
Received by editor(s): September 23, 2014
Received by editor(s) in revised form: March 19, 2015
Published electronically: May 26, 2015
Additional Notes: The author was partially supported by the Academy of Finland grants 131477 and 263850.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society