Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Operator $K$-theory for groups which act properly and isometrically on Hilbert space


Authors: Nigel Higson and Gennadi Kasparov
Journal: Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 131-142
MSC (1991): Primary 46L20
DOI: https://doi.org/10.1090/S1079-6762-97-00038-3
Published electronically: December 19, 1997
MathSciNet review: 1487204
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a countable discrete group which acts isometrically and metrically properly on an infinite-dimensional Euclidean space. We calculate the $K$-theory groups of the $C^{*}$-algebras $C^{*}_{\max }(G)$ and $C^{*}_{ \smash{\text{red}}}(G)$. Our result is in accordance with the Baum-Connes conjecture.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford 19 (1968), 113-140. MR 37:3584
  • 2. P. Baum, A. Connes, and N. Higson, Classifying space for proper $G$-actions and $K$-theory of group $C^{*}$-algebras, Contemp. Math. 167 (1994), 241-291. MR 96c:46070
  • 3. M. E. B. Bekka, P.-A. Cherix, and A. Valette, Proper affine isometric actions of amenable groups, Novikov conjectures, Index theorems and rigidity, vol. 2, S. Ferry, A. Ranicki and J. Rosenberg, editors, Cambridge University Press, Cambridge, 1995, pp. 1-4. MR 97e:43001
  • 4. B. Blackadar, $K$-theory for operator algebras, MSRI Publication Series 5, Springer-Verlag, New York-Heidelberg-Berlin-Tokyo, 1986. MR 88g:46082
  • 5. A. Connes, An analogue of the Thom isomorphism for crossed products, Advances in Math. 39 (1981), 31-55. MR 82j:46084
  • 6. A. Connes and N. Higson, Déformations, morphismes asymptotiques et $K$-théorie bivariante, C. R. Acad. Sci. Paris 311 Série 1 (1990), 101-106. MR 91m:46114
  • 7. P. Delorme, 1-cohomologie des représentations unitaries des groupes de Lie semi-simples et résolubles. Produits tensoriels continus et représentations, Bull. Soc. Math. France 105 (1977), 281-336. MR 58:28272
  • 8. S. Ferry, A. Ranicki and J. Rosenberg, A history and survey of the Novikov conjecture, Novikov conjectures, Index theorems and rigidity, vol. 1, S. Ferry, A. Ranicki and J. Rosenberg, editors, Cambridge University Press, Cambridge, 1995, pp. 7-66. MR 97f:57036
  • 9. P. Green, Equivariant $K$-theory and crossed product $C^{*}$-algebras, Proceedings of Symposia in Pure Mathematics 38 Part 1 (1982), 337-338. MR 83j:46004a
  • 10. M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, G. A. Niblo and M. A. Roller, editors, Cambridge Univeristy Press, Cambridge, 1993, pp. 1-295. MR 95m:20041
  • 11. E. Guentner, N. Higson, and J. Trout, Equivariant $E$-theory, Preprint, 1997.
  • 12. P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. de France, 1989. MR 90m:22001
  • 13. N. Higson and G. Kasparov, A note on the Baum-Connes conjecture in $KK$-theory and $E$-theory, In preparation.
  • 14. N. Higson, G. Kasparov, and J. Trout, A Bott periodicity theorem for infinite-dimensional Euclidean space, Advances in Math. (to appear).
  • 15. P. Julg, $K$-théorie equivariante et produits croisés, C. R. Acad. Sci. Paris 292 Série 1 (1981), 629-632. MR 83b:46090
  • 16. G. G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Inventiones Math. 91 (1988), 147-201. MR 88j:58123
  • 17. E. Kirchberg and S. Wassermann, In preparation.
  • 18. J. Mingo and W. Phillips, Equivariant triviality theorems for Hilbert modules, Proc. Amer. Math. Soc. 91 (1984), 225-230. MR 85f:46111
  • 19. G. K. Pedersen, $C^{*}$-algebras and their automorphism groups, Academic Press, London-New York-San Francisco, 1979. MR 81e:46037
  • 20. G. Segal, Equivariant $K$-theory, Publ. Math. IHES 34 (1968), 129-151. MR 38:2769
  • 21. J.-L. Tu, The Baum-Connes conjecture and discrete group actions on trees, Preprint.
  • 22. S. Wassermann, Exact $C^{*}$-algebras and related topics, Res. Inst. of Math. Lecture Note Series 19, Seoul National University, Seoul, South Korea, 1994. MR 95b:46081

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 46L20

Retrieve articles in all journals with MSC (1991): 46L20


Additional Information

Nigel Higson
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, PA 16802
Email: higson@math.psu.edu

Gennadi Kasparov
Affiliation: Institut de Mathématiques de Luminy, CNRS-Luminy-Case 930, 163 Avenue de Luminy 13288, Marseille Cedex 9, France
Email: kasparov@iml.univ-mrs.fr

DOI: https://doi.org/10.1090/S1079-6762-97-00038-3
Keywords: Baum-Connes conjecture, $C^{*}$-algebras, $K$-theory
Received by editor(s): October 25, 1997
Published electronically: December 19, 1997
Additional Notes: The first author was partially supported by an NSF grant.
Communicated by: Masamichi Takesaki
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society