Parusinski's ``Key Lemma'' via algebraic geometry
Authors:
Z. Reichstein and B. Youssin
Journal:
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 136145
MSC (1991):
Primary 14E15, 14F10, 14L30; Secondary 16S35, 32B10, 58A40
Published electronically:
November 17, 1999
MathSciNet review:
1728678
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The following ``Key Lemma'' plays an important role in the work by Parusinski on the existence of Lipschitz stratifications in the class of semianalytic sets: For any positive integer , there is a finite set of homogeneous symmetric polynomials in and a constant such that as densely defined functions on the tangent bundle of . We give a new algebrogeometric proof of this result.
 [B]
N.
Bourbaki, Éléments de mathématique. 23.
Première partie: Les structures fondamentales de l’analyse.
Livre II: Algèbre. Chapitre 8: Modules et anneaux semisimples,
Actualités Sci. Ind. no. 1261, Hermann, Paris, 1958 (French). MR 0098114
(20 #4576)
 [Mo]
Susan
Montgomery, Fixed rings of finite automorphism groups of
associative rings, Lecture Notes in Mathematics, vol. 818,
Springer, Berlin, 1980. MR 590245
(81j:16041)
 [MFK]
D.
Mumford, J.
Fogarty, and F.
Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related
Areas (2)], vol. 34, SpringerVerlag, Berlin, 1994. MR 1304906
(95m:14012)
 [P]
Adam
Parusiński, Lipschitz properties of semianalytic sets,
Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4,
189–213 (English, with French summary). MR 978246
(90e:32016)
 [RY]
Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for varieties, with an appendix by J. Kollár and E. Szabó, preprint. Available at http://ucs.orst.edu/reichstz/pub.html.
 [Sh]
I.
R. Shafarevich, Basic algebraic geometry, SpringerVerlag, New
YorkHeidelberg, 1974. Translated from the Russian by K. A. Hirsch; Die
Grundlehren der mathematischen Wissenschaften, Band 213. MR 0366917
(51 #3163)
 [B]
 N. Bourbaki, Algèbre, Hermann, Paris. MR 20:4576
 [Mo]
 S. Montgomery, Fixed points of finite automorphism groups of associative rings, Lect. Notes in Math. 818, SpringerVerlag, 1980. MR 81j:16041
 [MFK]
 D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory. Third enlarged edition, Springer, 1994. MR 95m:14012
 [P]
 A. Parusi\'{n}ski, Lipschitz properties of semianalytic sets, Ann. Inst. Fourier, Grenoble 38 (1988), 189213. MR 90e:32016
 [RY]
 Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for varieties, with an appendix by J. Kollár and E. Szabó, preprint. Available at http://ucs.orst.edu/reichstz/pub.html.
 [Sh]
 I. R. Shafarevich, Basic algebraic geometry, SpringerVerlag, Heidelberg, 1974. MR 51:3163
Similar Articles
Retrieve articles in Electronic Research Announcements of the American Mathematical Society
with MSC (1991):
14E15,
14F10,
14L30,
16S35,
32B10,
58A40
Retrieve articles in all journals
with MSC (1991):
14E15,
14F10,
14L30,
16S35,
32B10,
58A40
Additional Information
Z. Reichstein
Affiliation:
Department of Mathematics, Oregon State University, Corvallis, OR 97331
B. Youssin
Affiliation:
Department of Mathematics and Computer Science, University of the Negev, Be’er Sheva’, Israel
Address at time of publication:
Hashofar 26/3, Ma’ale Adumim, Israel
Email:
youssin@math.bgu.ac.il
DOI:
http://dx.doi.org/10.1090/S1079676299000724
PII:
S 10796762(99)000724
Received by editor(s):
October 16, 1999
Published electronically:
November 17, 1999
Additional Notes:
Z. Reichstein was partially supported by NSF grant DMS9801675 and (during his stay at MSRI) by NSF grant DMS9701755.
Communicated by:
David Kazhdan
Article copyright:
© Copyright 1999
American Mathematical Society
