Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762



Non-amenable finitely presented torsion-by-cyclic groups

Authors: A. Yu. Ol'shanskii and M. V. Sapir
Journal: Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 63-71
MSC (2000): Primary 20F05, 43A07
Published electronically: July 3, 2001
MathSciNet review: 1852901
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a finitely presented non-amenable group without free non-cyclic subgroups thus providing a finitely presented counterexample to von Neumann's problem. Our group is an extension of a group of finite exponent $n\gg 1$ by a cyclic group, so it satisfies the identity $[x,y]^n=1$.

References [Enhancements On Off] (What's this?)

  • 1. S. I. Adian. Random walks on free periodic groups. Izv. Akad. Nauk SSSR, Ser. Mat. 46 (1982), 1139-1149. MR 84m:43001
  • 2. S. I. Adian. Periodic products of groups. Number theory, mathematical analysis and their applications. Trudy Mat. Inst. Steklov. 142 (1976), 3-21, 268. MR 80m:20030
  • 3. S. Banach, A. Tarski. Sur la décomposition des ensembles de points en parties respectivement congruentes. Fund. Math 6 (1924), 244-277.
  • 4. J. C. Birget, A. Yu. Ol'shanskii, E. Rips, M. V. Sapir. Isoperimetric functions of groups and computational complexity of the word problem, 1998 (submitted to Annals of Mathematics), preprint available at$\sim$msapir/publications.html.
  • 5. M. G. Brin and C. C. Squier. Groups of piecewise linear homeomorphisms of the real line. Invent. Math. 79 (1985), 485-498. MR 86h:57033
  • 6. J. W. Cannon, W. J. Floyd and W. R. Parry. Introductory notes on Richard Thompson's groups. L'Enseignement Mathématique (2) 42 (1996), 215-256. MR 98g:20058
  • 7. A.H. Clifford and G.B. Preston, The algebraic theory of semigroups. Vol. I. Mathematical Surveys, No. 7. American Mathematical Society, Providence, R.I. 1961. MR 24:A2627
  • 8. J. M. Cohen. Cogrowth and amenability of discrete groups. J. Funct. Anal. 48 (1982), no. 3, 301-309. MR 85e:43004
  • 9. Mahlon M. Day. Amenable semigroups. Illinois J. Math. 1 (1957), 509-544. MR 19:1067c
  • 10. Open problems in infinite-dimensional topology. Edited by Ross Geoghegan. The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979). Topology Proc. 4 (1979), no. 1, 287-338 (1980). MR 82a:57015
  • 11. F. P. Greenleaf. Invariant means on topological groups and their applications. Van Nostrand Reinhold, New York, 1969. MR 40:4776
  • 12. R. I. Grigorchuk. Symmetrical random walks on discrete groups. Multicomponent random systems. Adv. Probab. Related Topics, 6, Dekker, New York, 1980, 285-325. MR 83k:60016
  • 13. R. I. Grigorchuk. An example of a finitely presented amenable group that does not belong to the class EG. Mat. Sb. 189 (1) (1998), 79-100. MR 99b:20055
  • 14. F. Hausdorff. Grundzüge der Mengenlehre. Leipzig, 1914.
  • 15. S. V. Ivanov and A. Y. Ol'shanskii. Hyperbolic groups and their quotients of bounded exponents. Trans. Amer. Math. Soc. 348 (1996), no. 6, 2091-2138. MR 96m:20057
  • 16. Harry Kesten. Full Banach mean values on countable groups. Math. Scand. 7 (1959), 146-156. MR 22:2911
  • 17. O. G. Kharlampovich and M. V. Sapir. Algorithmic problems in varieties. Internat. J. Algebra Comput. 5 (1995), no. 4-5, 379-602. MR 96m:20045
  • 18. Kourovka Notebook. Unsolved Problems in Group Theory. 8th edition, Novosibirsk, 1982. MR 84m:20002
  • 19. Roger Lyndon and Paul Schupp. Combinatorial group theory. Springer-Verlag, 1977. MR 58:28182
  • 20. J. von Neumann. Zur allgemeinen Theorie des Masses. Fund. Math. 13 (1929), 73-116.
  • 21. P. S. Novikov and S. I. Adian. Infinite periodic groups. I, II, III, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 212-244, 251-524, 709-731. MR 39:1532a; MR 39:1532b; MR 39:1532c
  • 22. A. Yu. Ol'shanskii. An infinite simple torsion-free Noetherian group. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 6, 1328-1393. MR 81i:20033
  • 23. A. Yu. Ol'shanskii. An infinite group with subgroups of prime order. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 2, 309-321. MR 82a:20035
  • 24. A. Yu. Ol'shanskii. On the question of the existence of an invariant mean on a group. (Russian) Uspekhi Mat. Nauk 35 (1980), no. 4 (214), 199-200. MR 82b:43002
  • 25. A. Yu. Ol'shanskii. The geometry of defining relations in groups, Nauka, Moscow, 1989. MR 91i:20035
  • 26. A. Yu. Ol'shanskii. The SQ-universality of hyperbolic groups, Mat. Sb. 186 (1995), no. 8, 119-132. MR 97b:20057
  • 27. A. Yu. Ol'shanskii, M. V. Sapir. Embeddings of relatively free groups into finitely presented groups. Contemporary Mathematics, 264 (2000), 23-47. CMP 2001:05
  • 28. A. Yu. Ol'shanskii and M. V. Sapir. Length and area functions on groups and quasi-isometric Higman embeddings. To appear, IJAC, 2000.
  • 29. A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. (Submitted).
  • 30. M. V. Sapir, J. C. Birget, E. Rips. Isoperimetric and isodiametric functions of groups, 1997, submitted to Annals of Mathematics, preprint available at$\sim$msapir/publications.html.
  • 31. W. Specht. Zur Theorie der messbaren Gruppen. Math. Z. 74 (1960), 325-366. MR 25:4058
  • 32. J. Tits. Free subgroups in linear groups. J. Algebra 20 (1972), 250-270. MR 44:4105

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (2000): 20F05, 43A07

Retrieve articles in all journals with MSC (2000): 20F05, 43A07

Additional Information

A. Yu. Ol'shanskii
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, TN 37240, and Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia

M. V. Sapir
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Keywords: Amenable group, Burnside groups, free subgroups
Received by editor(s): January 9, 2001
Published electronically: July 3, 2001
Additional Notes: Both authors were supported in part by the NSF grant DMS 0072307. In addition, the research of the first author was supported in part by the Russian fund for fundamental research 99-01-00894, and the research of the second author was supported in part by the NSF grant DMS 9978802.
Communicated by: Efim Zelmanov
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society