Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 
 

 

Cluster homology: An overview of the construction and results


Authors: Octav Cornea and François Lalonde
Journal: Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 1-12
MSC (2000): Primary 53D12; Secondary 53D40
DOI: https://doi.org/10.1090/S1079-6762-06-00154-5
Published electronically: February 10, 2006
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We associate, to a Lagrangian submanifold $ L$ of a symplectic manifold, a new homology, called the cluster homology of $ L$, which is invariant up to ambient symplectic diffeomorphisms. We discuss various applications concerning analytical, topological, and dynamical properties of Lagrangian submanifolds. We also deduce a new universal Floer homology, defined without obstruction, for pairs of Lagrangian submanifolds.


References [Enhancements On Off] (What's this?)

  • 1. P. Albers, On the extrinsic topology of Lagrangian submanifolds, International Mathematics Research Notices 2005, no. 38, 2341-2371. MR 2180810
  • 2. J.-F. Barraud, O. Cornea, Homotopical Dynamics in Symplectic Topology, Morse theoretic methods in nonlinear analysis and in symplectic topology, pp. 109-148, Springer-Verlag, 2006.
  • 3. F. Bourgeois, A Morse-Bott approach to contact homology, PhD thesis, Stanford University 2002.
  • 4. O. Cornea, F. Lalonde, Cluster homology, arXiv:math.SG/0508345 August 2005.
  • 5. K. Fukaya, Y-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory--anomaly and obstruction, Preprint.
  • 6. K. Fukaya, Application of Floer homology of Lagrangian submanifolds to symplectic topology, To appear in the NATO-ASI 2004 volume, Kluwer, 2005.
  • 7. D. Gatien, F. Lalonde, Holomorphic cylinders with Lagrangian boundary conditions and Hamiltonian dynamics, Duke Math. J. 102 (2000), 485-511. MR 1756107 (2002h:53146)
  • 8. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 0809718 (87j:53053)
  • 9. H. Hofer, K. Wysocki, E. Zehnder, Polyfolds and Fredholm theory, Preprint 2005.
  • 10. D. McDuff, D. Salamon, $ J$-Holomorphic Curves and Symplectic Topology, AMS Colloquium Publications, Vol. 52, Providence, RI, 2004. MR 2045629 (2004m:53154)
  • 11. Y-G. Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, Contact and symplectic geometry (Cambridge, 1994), pp. 201-267, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996. MR 1432465 (98a:58032)
  • 12. Y-G. Oh, Floer Cohomology of Lagrangian Intersections and Pseudoholomorphic Disks I, Comm. P. Appl. Math. 46 (1993), 949-994. MR 1223659 (95d:58029a)
  • 13. S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994), pp. 171-200, Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996. MR 1432464 (97m:57053)
  • 14. J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (1993), 827-844. MR 1241874 (94i:58071)
  • 15. M. Schwarz, A quantum cup-length estimate for symplectic fixed points, Invent. Math. 133 (1998), no. 2, 353-397. MR 1632778 (99e:58041)

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (2000): 53D12, 53D40

Retrieve articles in all journals with MSC (2000): 53D12, 53D40


Additional Information

Octav Cornea
Affiliation: Université de Montréal, Département de Mathématiques et de Statistique, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada
Email: cornea@dms.umontreal.ca

François Lalonde
Affiliation: Université de Montréal, Département de Mathématiques et de Statistique, C.P. 6128 Succ. Centre-ville, Montréal H3C 3J7, Québec, Canada
Email: lalonde@dms.umontreal.ca

DOI: https://doi.org/10.1090/S1079-6762-06-00154-5
Keywords: Lagrangian submanifolds, bubbling
Received by editor(s): August 31, 2005
Published electronically: February 10, 2006
Additional Notes: The authors were supported in part by individual NSERC Discovery Grants and by team FQRNT grants.
Communicated by: Leonid Polterovich
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society