Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Admissible nilpotent coadjoint orbits
of $p$-adic reductive Lie groups


Author: Monica Nevins
Journal: Represent. Theory 3 (1999), 105-126
MSC (1991): Primary 20G25; Secondary 22E50
DOI: https://doi.org/10.1090/S1088-4165-99-00072-2
Published electronically: June 22, 1999
MathSciNet review: 1698202
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group $G$, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of $p$-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general linear and special linear groups over $p$-adic fields, the admissible nilpotent orbits coincide with the so-called special orbits defined by Lusztig and Spaltenstein in connection with the Springer correspondence.


References [Enhancements On Off] (What's this?)

  • [Ad] Jeffrey Adams, Extensions of Tori in $SL(2)$, preprint, 1998.
  • [Ar] James Arthur, Unipotent automorphic representations: conjectures, Astérisque 171 (1989), 13-71. MR 91f:22030
  • [C] Roger Carter, Finite Groups of Lie Type, Wiley and Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1985. MR 94k:20020
  • [Ch] Claude Chevalley, Théorie des groupes de Lie, Tome II: groupes algébriques, Hermann, Paris, 1951. MR 14:448d
  • [CMcG] David Collingwood and William McGovern, Nilpotent Orbits in Semisimple Lie Algebras, D. Van Nostrand Reinhold, New York, 1993. MR 94j:17001
  • [D] M. Duflo, Construction de représentations unitaires d'un groupe de Lie, in Harmonic Analysis and Group Representations, C.I.M.E. (1980), 129-222. MR 87b:22028
  • [HKS] Michael Harris, Stephen S. Kudla, and William J. Sweet, Theta Dichotomy for Unitary Groups, J. Amer. Math. Soc. 9 No. 4 (1996), 941-1004. MR 96m:11041
  • [FV] I.B. Fesenko and S.V. Vostokov, Local Fields and their Extensions: A Constructive Approach, Translations of Mathematical Monographs 121, American Mathematical Society, Providence, 1993. MR 94d:11095
  • [FKS] Y. Flicker, D. Kazhdan and G. Savin, Explicit realization of a metaplectic representation, J. Anal. Math. 55 (1990), 17-39. MR 92c:22036
  • [K] A.A. Kirillov, Unitary Representations of Nilpotent Lie Groups, [Russian], Uspehi Mat. Nauk 17 No. 4(106) (1962), 57-110. MR 25:5396
  • [Ka] David Kazhdan, The Minimal Representation of $D_4$, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et. al., eds.), Progr. Math. 92, Birkhäuser, Boston, 1990, 125-158. MR 92i:22015
  • [KS] David Kazhdan and Gordan Savin, The smallest representation of simply laced groups, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part I, Israel Math. Conf. Proc. 2 Weizmann, Jerusalem, 1990, 209-223. MR 93f:22019
  • [LP] Gérard Lion and Patrice Perrin, Extension des représentations de groupes unipotents $p$-adiques. Calculs d'obstructions, in Non Commutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics 880. Springer-Verlag, Berlin-Heidelberg-New York, 1981, 337-356. MR 83h:22032
  • [LV] Gérard Lion and Michèle Vergne, The Weil representation, Maslov index, and Theta series, Birkhäuser, Boston-Basel-Berlin, 1980. MR 81j:58075
  • [Lu1] George Lusztig, A class of irreducible representations of a Weyl group, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), 323-335. MR 81a:20052
  • [Lu2] George Lusztig, Characters of Reductive Groups over a Finite Field, Annals of Mathematical Studies 107, Princeton University Press, 1984. MR 86j:20038
  • [M] C. M{\oe}glin, Front d'onde des représentations des groupes classiques $p$-adiques, Amer. J. Math. 118 no. 6 (1996), 1313-1346. MR 98d:22015
  • [MVW] C. M{\oe}glin, M.-F. Vigneras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics 1291. Springer-Verlag, Berlin-Heidelberg-New York, 1987. MR 91f:11040
  • [Mo] C.C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math 82 (1965), 146-182. MR 31:5928
  • [N] Jürgen Neukirch, Class Field Theory, Grundlehren der mathematischen Wissenschaften 280, Springer-Verlag, Belin-Heidelberg-New York-Tokyo, 1986. MR 87i:11005
  • [P] Patrice Perrin, Représentations de Schrödinger. Indice de Maslov et groupe metaplectique, in Non Commutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics 880, Springer-Verlag, Berlin-Heidelberg-New York, 1981, 370-407. MR 83m:22027
  • [Pl] V.P. Platonov, The Problem of Strong Approximation and the Kneser-Tits Conjecture, Math. USSR Izv. 3 (1969), 1139-1147; Addendum: ibid 4 (1970), 784-786.
  • [Pr] Dipendra Prasad, Theta correspondence for Unitary Groups, preprint (1997).
  • [RR] R. Ranga Rao, On some Explicit Formulas in the theory of Weil Representation, Pacific J. of Math. 157, No. 2 (1993), 335-371. MR 94a:22037
  • [S] Gordan Savin, An analogue of the Weil representation for $G_2$, J. Reine Angew. Math. 434 (1993), 115-126. MR 94a:22038
  • [Sch] James O. Schwarz, The Determination of the Admissible Nilpotent Orbits in Real Classical Groups, Ph.D. thesis, MIT, 1987.
  • [Sp] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math. 946, Springer-Verlag, New York, 1982. MR 84a:14024
  • [T] Pierre Torasso, Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle, Duke Math. J. 90, No. 2 (1997), 261-377. MR 99c:22028
  • [V1] David A. Vogan, Jr., Unitary Representations of Reductive Lie Groups, Annals of Mathematical Studies, 118. Princeton University Press, 1987. MR 89g:22024
  • [V2] David A. Vogan, Jr., Unitary Representations of Reductive Lie Groups and the Orbit Method. Based on notes prepared by Jorge Vargas, in New Developments in Lie Theory and their Applications (Córdoba 1989), Progr. Math. 105, Birkhäuser, Boston (1992) 87-114. MR 93j:22024
  • [V3] David A. Vogan, Jr., Associated Varieties and Unipotent Representations, in Harmonic Analysis on Reductive Groups, Birkhäuser, Boston-Basel-Berlin, 1991. MR 93k:22012
  • [V4] David A. Vogan, Jr., The Unitary Dual of $G_2$, Invent. Math. 116 (1994), 677-791. MR 95b:22037
  • [V5] David A. Vogan, Jr., The Method of Coadjoint Orbits for Real Reductive Groups, IAS/Park City Mathematics Series 6, (1998).
  • [W] A. Weil, Sur certaines groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211. MR 29:2324

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (1991): 20G25, 22E50

Retrieve articles in all journals with MSC (1991): 20G25, 22E50


Additional Information

Monica Nevins
Affiliation: Department of Mathematics, University of Alberta, Edmonton, AB T6G 2G1, Canada
Email: mnevins@alum.mit.edu

DOI: https://doi.org/10.1090/S1088-4165-99-00072-2
Keywords: Orbit method, nilpotent orbits, admissible orbits, $p$-adic groups
Received by editor(s): December 7, 1998
Received by editor(s) in revised form: February 2, 1999
Published electronically: June 22, 1999
Additional Notes: Ph.D. research supported by a teaching assistantship in the Department of Mathematics at MIT, and by an ‘NSERC 1967’ Scholarship from the Natural Sciences and Engineering Research Council of Canada. Postdoctoral research supported by the Killam Trust
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society