On Laguerre polynomials, Bessel functions, Hankel transform and a series in the unitary dual of the simplyconnected covering group of
Author:
Bertram Kostant
Journal:
Represent. Theory 4 (2000), 181224
MSC (2000):
Primary 22D10, 22E70, 33Cxx, 33C10, 33C45, 42C05, 43xx, 43A65
Published electronically:
April 26, 2000
MathSciNet review:
1755901
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Analogous to the holomorphic discrete series of there is a continuous family , , of irreducible unitary representations of , the simplyconnected covering group of . A construction of this series is given in this paper using classical function theory. For all the Hilbert space is . First of all one exhibits a representation, , of by second order differential operators on . For , and let where is the Laguerre polynomial with parameters . Let be the span of for . Next one shows, using a famous result of E. Nelson, that exponentiates to the unitary representation of . The power of Nelson's theorem is exhibited here by the fact that if , one has , whereas is inequivalent to . For , the elements in the pair are the two components of the metaplectic representation. Using a result of G.H. Hardy one shows that the Hankel transform is given by where induces the nontrivial element of a Weyl group. As a consequence, continuity properties and enlarged domains of definition, of the Hankel transform follow from standard facts in representation theory. Also, if is the classical Bessel function, then for any , the function is a Whittaker vector. Other weight vectors are given and the highest weight vector is given by a limiting behavior at .
 [BL]
Lawrence
C. Biedenharn and James
D. Louck, The RacahWigner algebra in quantum theory,
Encyclopedia of Mathematics and its Applications, vol. 9,
AddisonWesley Publishing Co., Reading, Mass., 1981. With a foreword by
Peter A. Carruthers; With an introduction by George W. Mackey. MR 636504
(83d:81002)
 [Ca]
Pierre
Cartier, Vecteurs différentiables dans les
représentations unitaires des groupes de Lie, Séminaire
Bourbakt (1974/1975), Exp. No. 454, Springer, Berlin, 1976,
pp. 20–34. Lecture Notes in Math., Vol. 514 (French). MR 0460541
(57 #534)
 [DG]
Hongming
Ding and Kenneth
I. Gross, Operatorvalued Bessel functions on Jordan algebras,
J. Reine Angew. Math. 435 (1993), 157–196. MR 1203914
(93m:33010)
 [Ha]
G. Hardy, Summation of a series of polynomials of Laguerre, Journ. London Math. Soc., 7 (1932), 138139, 192.
 [He]
Carl
S. Herz, Bessel functions of matrix argument, Ann. of Math.
(2) 61 (1955), 474–523. MR 0069960
(16,1107e)
 [Ja]
Dunham
Jackson, Fourier Series and Orthogonal Polynomials, Carus
Monograph Series, no. 6, Mathematical Association of America, Oberlin,
Ohio, 1941. MR
0005912 (3,230f)
 [Ko]
Bertram
Kostant, On Whittaker vectors and representation theory,
Invent. Math. 48 (1978), no. 2, 101–184. MR 507800
(80b:22020), http://dx.doi.org/10.1007/BF01390249
 [Ne]
Edward
Nelson, Analytic vectors, Ann. of Math. (2)
70 (1959), 572–615. MR 0107176
(21 #5901)
 [Pu]
L.
Pukánszky, The Plancherel formula for the universal covering
group of 𝑆𝐿(𝑅,2), Math. Ann.
156 (1964), 96–143. MR 0170981
(30 #1215)
 [RV]
M.
Vergne and H.
Rossi, Analytic continuation of the holomorphic discrete series of
a semisimple Lie group, Acta Math. 136 (1976),
no. 12, 1–59. MR 0480883
(58 #1032)
 [Sc]
Laurent
Schwartz, Théorie des distributions. Tome II,
Actualités Sci. Ind., no. 1122 = Publ. Inst. Math. Univ. Strasbourg
10, Hermann & Cie., Paris, 1951 (French). MR 0041345
(12,833d)
 [Se]
I.
E. Segal, A class of operator algebras which are determined by
groups, Duke Math. J. 18 (1951), 221–265. MR 0045133
(13,534b)
 [Sz]
Gabor
Szegö, Orthogonal Polynomials, American Mathematical
Society, New York, 1939. American Mathematical Society Colloquium
Publications, v. 23. MR 0000077
(1,14b)
 [Ta]
Michael
E. Taylor, Noncommutative harmonic analysis, Mathematical
Surveys and Monographs, vol. 22, American Mathematical Society,
Providence, RI, 1986. MR 852988
(88a:22021)
 [Wa]
Garth
Warner, Harmonic analysis on semisimple Lie groups. I,
SpringerVerlag, New YorkHeidelberg, 1972. Die Grundlehren der
mathematischen Wissenschaften, Band 188. MR 0498999
(58 #16979)
 [W1]
Nolan
R. Wallach, The analytic continuation of the
discrete series. I, II, Trans. Amer. Math.
Soc. 251 (1979),
1–17, 19–37. MR 531967
(81a:22009), http://dx.doi.org/10.1090/S00029947197905319672
 [W2]
Nolan
R. Wallach, The analytic continuation of the
discrete series. I, II, Trans. Amer. Math.
Soc. 251 (1979),
1–17, 19–37. MR 531967
(81a:22009), http://dx.doi.org/10.1090/S00029947197905319672
 [Wt]
G. Watson, Theory of Bessel Functions, Cambridge Univ. Press, 1966.
 [Yo]
K. Yosida, Functional Analysis, Grundlehren, 123, SpringerVerlag, 1971.
 [BL]
 L. Biedenharn and J. Louck, The RacahWigner algebra in quantum theory, AddisonWesley, Reading MA, 1981. MR 83d:81002
 [Ca]
 P. Cartier, Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Séminaire Bourbaki, 454 (19741975). MR 57:534
 [DG]
 H. Ding, K. J. Gross, Operatorvalued Bessel functions on Jordan algebras, J. Reine Angew. Math. 435 (1993), 157196. MR 93m:33010
 [Ha]
 G. Hardy, Summation of a series of polynomials of Laguerre, Journ. London Math. Soc., 7 (1932), 138139, 192.
 [He]
 C. Herz, Bessel functions of matrix argument, Ann. Math. 61 (1955), 474523. MR 16:1107e
 [Ja]
 D. Jackson, Fourier Series and Orthogonal Polynomials, Carus Math. Monographs, 6, MAA, 1941. MR 3:230f
 [Ko]
 B. Kostant, On Whittaker Vectors and Representation Theory, Inventiones math., 48, (1978), 101184. MR 80b:22020
 [Ne]
 E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572615. MR 21:5901
 [Pu]
 L. Pukanszky, The Plancherel Formula for the Universal Covering group of , Math. Annalen 156 (1964), 96143. MR 30:1215
 [RV]
 H. Rossi, M. Vergne, Analytic continuation of the holomorphic discrete series of a semisimple Lie group, Acta Math. 136 (1976), 159. MR 58:1032
 [Sc]
 L. Schwartz, Théorie des Distributions, II, Hermann, 1951. MR 12:833d
 [Se]
 I. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221265. MR 13:534b
 [Sz]
 G. Szego, Orthogonal Polynomials, AMS Colloquium Publications, 23, 1939. MR 1:14b
 [Ta]
 M. Taylor, Noncommutative Harmonic Analysis, Math. Surveys and Monographs, 22, Amer. Math. Soc., 1986. MR 88a:22021
 [Wa]
 G. Warner, Harmonic Analysis on SemiSimple Lie Groups I, Grundlehren, 188, SpringerVerlag, 1972. MR 58:16979
 [W1]
 N. Wallach, The analytic continuation of the discrete series, I. Trans. Amer. Math. Soc., 251 (1979), 117. MR 81a:22009
 [W2]
 N. Wallach, The analytic continuation of the discrete series, II. Trans. Amer. Math. Soc., 251 (1979), 1837. MR 81a:22009
 [Wt]
 G. Watson, Theory of Bessel Functions, Cambridge Univ. Press, 1966.
 [Yo]
 K. Yosida, Functional Analysis, Grundlehren, 123, SpringerVerlag, 1971.
Similar Articles
Retrieve articles in Representation Theory of the American Mathematical Society
with MSC (2000):
22D10,
22E70,
33Cxx,
33C10,
33C45,
42C05,
43xx,
43A65
Retrieve articles in all journals
with MSC (2000):
22D10,
22E70,
33Cxx,
33C10,
33C45,
42C05,
43xx,
43A65
Additional Information
Bertram Kostant
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email:
kostant@math.mit.edu
DOI:
http://dx.doi.org/10.1090/S1088416500000960
PII:
S 10884165(00)000960
Received by editor(s):
December 2, 1999
Received by editor(s) in revised form:
January 21, 2000
Published electronically:
April 26, 2000
Additional Notes:
Research supported in part by NSF grant DMS9625941 and in part by the KG&G Foundation
Article copyright:
© Copyright 2000
American Mathematical Society
