Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Degenerate principal series for even-orthogonal groups


Authors: Dubravka Ban and Chris Jantzen
Journal: Represent. Theory 7 (2003), 440-480
MSC (2000): Primary 22E50
DOI: https://doi.org/10.1090/S1088-4165-03-00166-3
Published electronically: October 9, 2003
MathSciNet review: 2017065
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F$ be a $p$-adic field of characteristic 0 and $G=O(2n,F)$ (resp. $SO(2n,F)$). A maximal parabolic subgroup of $G$ has the form $P=MU$, with Levi factor $M \cong GL(k,F) \times O(2(n-k),F)$ (resp. $M \cong GL(k,F) \times SO(2(n-k),F)$). We consider a one-dimensional representation of $M$ of the form $\chi \circ det_k \otimes triv_{(n-k)}$, with $\chi$ a one-dimensional representation of $F^{\times}$; this may be extended trivially to get a representation of $P$. We consider representations of the form $\mbox{Ind}_P^G(\chi \circ det_k \otimes triv_{(n-k)}) \otimes 1$. (Our results also work when $G=O(2n,F)$ and the inducing representation is $(\chi \circ det_k \otimes det_{(n-k)}) \otimes 1$, using $det_{(n-k)}$ to denote the nontrivial character of $O(2(n-k),F)$.) More generally, we allow Zelevinsky segment representations for the inducing representations.

In this paper, we study the reducibility of such representations. We determine the reducibility points, give Langlands data and Jacquet modules for each of the irreducible composition factors, and describe how they are arranged into composition series. For $O(2n,F)$, we use Jacquet module methods to obtain our results; the results for $SO(2n,F)$ are obtained via an analysis of restrictions to $SO(2n,F)$.


References [Enhancements On Off] (What's this?)

  • [Aub] A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif $p$-adique, Trans. Amer. Math. Soc., 347(1995), 2179-2189, and Erratum à ``Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif $p$-adique'', Trans. Amer. Math. Soc., 348(1996), 4687-4690. MR 95i:22025
  • [Ban1] D. Ban, Parabolic induction and Jacquet modules of representations of $O(2n,F)$, Glasnik. Mat., 34(54)(1999), 147-185. MR 2001m:22033
  • [Ban2] D. Ban, Self-duality in the case of $SO(2n,F)$, Glasnik. Mat., 34(54)(1999), 187-196. MR 2002a:22022
  • [Ban3] D. Ban, Jacquet modules of parabolically induced representations and Weyl groups, Can. J. Math., 53(2001), 675-695. MR 2002j:22020
  • [B-J1] D. Ban and C. Jantzen, The Langlands classification for non-connected $p$-adic groups, Isr. J. Math., 126(2001), 239-261. MR 2002i:22018
  • [B-J2] D. Ban and C. Jantzen, The Langlands classification for non-connected $p$-adic groups II: Multiplicity one, Proc. Amer. Math. Soc., 131(2003), 3297-3304.
  • [B-Z] I. Bernstein and A. Zelevinsky, Induced representations of reductive $\mathfrak p$-adic groups $I$, Ann. Sci. Éc. Norm. Sup., 10 (1977), 441-472. MR 58:28310
  • [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, 1980. MR 83c:22018
  • [Ch] S. Choi, Degenerate principal series for exceptional $p$-adic groups Ph.D. thesis, University of Michigan, 2002.
  • [G-K] S. Gelbart and A. Knapp, $L$-indistinguishability and $R$ groups for the special linear group, Adv. in Math., 43(1982), 101-121. MR 83j:22009
  • [Gol1] D. Goldberg, Reducibility of induced representations for $Sp(2n)$ and $SO(n)$, Amer. J. Math., 116(1994), 1101-1151. MR 95g:22016
  • [Gol2] D. Goldberg, Reducibility for non-connected $p$-adic groups with $G^\circ$ of prime index, Can. J. Math., 47(1995), 344-363. MR 96d:22003
  • [G-H] D. Goldberg and R. Herb, Some results on the admissible representations of non-connected reductive $p$-adic groups, Ann. Sci. Éc. Norm. Sup., 30(1997), 97-146. MR 98b:22033
  • [Gus] R. Gustafson, The degenerate principal series for $Sp(2n)$, Mem. Amer. Math. Soc., 248(1981), 1-81. MR 83e:22021
  • [H-L] R. Howe and S. Lee, Degenerate principal series representations of $GL_n(\mathbb C)$ and $GL_n({\mathbb R})$, J. Funct. Anal., 166(1999), 244-309. MR 2000g:22023
  • [Jan1] C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc., 488(1993), 1-111. MR 93g:22018
  • [Jan2] C. Jantzen, Degenerate principal series for orthogonal groups, J. Reine Angew. Math., 441(1993), 61-98. MR 94:22022
  • [Jan3] C. Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups, Mem. Amer. Math. Soc., 590(1996), 1-100. MR 97d:22020
  • [Jan4] C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math., 119(1997), 1213-1262. MR 99b:22028
  • [Jan5] C. Jantzen, Some remarks on degenerate principal series, Pac. J. Math., 186(1998), 67-87. MR 99j:22018
  • [Jan6] C. Jantzen, On duality and supports of induced representations for even-orthogonal groups, preprint.
  • [K-R] S. Kudla and S. Rallis, Ramified degenerate principal series representations for $Sp(n)$, Isr. J. Math., 78(1992), 209-256. MR 94a:22035
  • [K-S] S. Kudla and J. Sweet, Degenerate principal series representations for $U(n,n)$, Isr. J. Math., 98(1997), 253-306. MR 98h:22021
  • [M\oe] C. M\oeglin, Normalisation des opérateurs d'entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques $p$-adiques, Ann. of Math., 151(2000), 817-847. MR 2002b:22032
  • [Mu] G. Muic, The unitary dual of $p$-adic $G_2$, Duke Math. J., 90(1997), 465-493. MR 98k:22073
  • [M-R] F. Murnaghan and J. Repka, Reducibility of some induced representations of split classical $p$-adic groups, Comp. Math., 114(1998), 263-313. MR 99m:22021
  • [Re] M. Reeder, Hecke algebras and harmonic analysis on $p$-adic groups, Amer. J. Math., 119(1997), 225-248. MR 99c:22025
  • [S-S] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. IHES, 85(1997), 97-191. MR 98m:22023
  • [Sh1] F. Shahidi, A proof of Langlands conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math., 132(1990), 273-330. MR 91m:11095
  • [Sh2] F. Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J., 66(1992), 1-41. MR 93d:22034
  • [Sil1] A. Silberger, The Langlands quotient theorem for $p$-adic groups, Math. Ann., 236(1978), 95-104. MR 58:22413
  • [Sil2] A. Silberger, Introduction to Harmonic Analysis on Reductive $p$-adic Groups, Princeton University Press, Princeton, 1979. MR 81m:22025
  • [Sil3] A. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math., 111(1980), 571-587. MR 82k:22015
  • [Tad1] M. Tadic, Notes on representations of non-archimedian $SL(n)$, Pac. J. Math., 152(1992), 375-396. MR 92k:22029
  • [Tad2] M. Tadic, Representations of $p$-adic symplectic groups, Comp. Math., 90(1994), 123-181. MR 95a:22025
  • [Tad3] M. Tadic, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra, 177(1995), 1-33. MR 97b:22023
  • [Tad4] M. Tadic, On reducibility of parabolic induction, Isr. J. Math., 107(1998), 29-91. MR 2001d:22012
  • [Zel] A. Zelevinsky, Induced representations of reductive $\mathfrak p$-adic groups $II$, On irreducible representations of $GL(n)$, Ann. Sci. Éc. Norm. Sup., 13 (1980), 165-210. MR 83g:22012
  • [Zh] Y. Zhang, L-packets and reducibilities, J. Reine Angew. Math., 510(1999), 83-102. MR 2000e:22009

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50

Retrieve articles in all journals with MSC (2000): 22E50


Additional Information

Dubravka Ban
Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901
Email: dban@math.siu.edu

Chris Jantzen
Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858
Email: jantzenc@mail.ecu.edu

DOI: https://doi.org/10.1090/S1088-4165-03-00166-3
Received by editor(s): May 7, 2002
Received by editor(s) in revised form: September 22, 2003
Published electronically: October 9, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society