Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On the uniqueness of Fourier Jacobi models for representations of $ U(n,1)$


Authors: Ehud Moshe Baruch and Stephen Rallis
Journal: Represent. Theory 11 (2007), 1-15
MSC (2000): Primary 22E50; Secondary 11F70
DOI: https://doi.org/10.1090/S1088-4165-07-00298-1
Published electronically: January 5, 2007
MathSciNet review: 2276364
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every irreducible unitary representation of $ U(n,1)$, has at most one Fourier Jacobi model.


References [Enhancements On Off] (What's this?)

  • 1. Ehud Moshe Baruch, Ilya Piatetski-Shapiro, and Stephen Rallis, On the uniqueness of Fourier Jacobi models for representations of $ {\rm U}(2,1)$, Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, vol. 210, Amer. Math. Soc., Providence, RI, 2003, pp. 47-56. MR 2018352 (2004k:22021)
  • 2. Ehud Moshe Baruch and Steve Rallis, A uniqueness theorem of Fourier Jacobi models for representations of $ {\rm {s}p}(4)$, J. London Math. Soc. (2) 62 (2000), no. 1, 183-197. MR 1772180 (2001j:22021)
  • 3. S. Böcherer, J. H. Bruinier, and W. Kohnen, Non-vanishing of scalar products of Fourier-Jacobi coefficients of Siegel cusp forms, Math. Ann. 313 (1999), no. 1, 1-13. MR 1666805 (2000a:11066)
  • 4. Stephen Gelbart, Examples of dual reductive pairs, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 287-296. MR 0546603 (81f:22035)
  • 5. Stephen Gelbart and Ilya Piatetski-Shapiro, Automorphic forms and $ {L}$-functions for the unitary group, Lie group representations, II (College Park, Md., 1982/1983), Springer, Berlin, 1984, pp. 141-184. MR 0748507 (86f:11084)
  • 6. Stephen S. Gelbart and Jonathan D. Rogawski, $ {L}$-functions and Fourier-Jacobi coefficients for the unitary group $ {\rm {U}}(3)$, Invent. Math. 105 (1991), no. 3, 445-472. MR 1117148 (93b:11059)
  • 7. Miki Hirano, Fourier-Jacobi type spherical functions for $ P\sb J$-principal series representations of $ {\rm Sp}(2,\mathbf{R})$, J. London Math. Soc. (2) 65 (2002), no. 3, 524-546. MR 1895731 (2003c:11046)
  • 8. Yoshi-hiro Ishikawa, The generalized Whittaker functions for $ {\rm SU}(2,1)$ and the Fourier expansion of automorphic forms, J. Math. Sci. Univ. Tokyo 6 (1999), no. 3, 477-526. MR 1726680 (2001b:22011)
  • 9. -, The generalized Whittaker functions for the discrete series representations of $ {\rm SU}(3,1)$, Surikaisekikenkyusho Kokyuroku (1999), no. 1094, 97-109, Automorphic forms on $ {\rm Sp}(2;{\bf R})$ and $ {\rm SU}(2,2)$, II (Kyoto, 1998). MR 1751059
  • 10. Shin-ichi Kato, Atsushi Murase, and Takashi Sugano, Whittaker-Shintani functions for orthogonal groups, Tohoku Math. J. (2) 55 (2003), no. 1, 1-64. MR 1956080 (2003m:22020)
  • 11. Jian-Shu Li, Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998), IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 293-340. MR 1737731 (2001a:22013)
  • 12. Atsushi Murase and Takashi Sugano, Whittaker-Shintani functions on the symplectic group of Fourier-Jacobi type, Compositio Math. 79 (1991), no. 3, 321-349. MR 1121142 (92k:11052)
  • 13. -, Fourier-Jacobi expansion of Eisenstein series on unitary groups of degree three, J. Math. Sci. Univ. Tokyo 9 (2002), no. 2, 347-404. MR 1904935 (2003f:11065)
  • 14. L. Schwartz, Théorie des distributions. Tome I, Hermann & Cie., Paris, 1950. MR 0035918 (12,31d)
  • 15. J. A. Shalika, The multiplicity one theorem for $ {\rm {GL}}\sb{n}$, Ann. of Math. (2) 100 (1974), 171-193. MR 0348047 (50:545)
  • 16. Nolan R. Wallach, Real reductive groups. I, Academic Press Inc., Boston, MA, 1988. MR 0929683 (89i:22029)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50, 11F70

Retrieve articles in all journals with MSC (2000): 22E50, 11F70


Additional Information

Ehud Moshe Baruch
Affiliation: Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
Email: embaruch@math.technion.ac.il

Stephen Rallis
Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Email: haar@math.ohio-state.edu

DOI: https://doi.org/10.1090/S1088-4165-07-00298-1
Keywords: Fourier Jacobi, invariant distributions
Received by editor(s): October 28, 2005
Received by editor(s) in revised form: September 18, 2006
Published electronically: January 5, 2007
Additional Notes: Research of the second author was partially supported by the NSF
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society