Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Jacquet modules of $ p$-adic general linear groups

Author: Chris Jantzen
Journal: Represent. Theory 11 (2007), 45-83
MSC (2000): Primary 22E50
Published electronically: April 18, 2007
MathSciNet review: 2306606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study Jacquet modules for $ p$-adic general linear groups. More precisely, we have results--formulas and algorithms--aimed at addressing the following question: Given the Langlands data for an irreducible representation, can we determine its (semisimplified) Jacquet module? We use our results to answer this question in a number of cases, as well as to recover some familiar results as relatively easy consequences.

References [Enhancements On Off] (What's this?)

  • [Aub] A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif $ p$-adique, Trans. Amer. Math. Soc., 347(1995), 2179-2189, and Erratum à ``Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif $ p$-adique'', Trans. Amer. Math. Soc., 348(1996), 4687-4690. MR 1285969 (95i:22025)
  • [B-Z] I. Bernstein and A. Zelevinsky, Induced representations of reductive $ p$-adic groups $ I$, Ann. Sci. École Norm. Sup., 10 (1977), 441-472. MR 0579172 (58:28310)
  • [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, 1980. MR 554917 (83c:22018)
  • [B-K] C. Bushnell and P. Kutzko, The Admissible Dual of $ GL(N)$ Via Compact Open Subgroups, Princeton University Press, Princeton, 1993. MR 1204652 (94h:22007)
  • [Cas1] W. Casselman, Introduction to the theory of admissible representations of $ p$-adic reductive groups, preprint.
  • [Cas2] W. Casselman, The Steinberg character as a true character, Proc. Sympos. Pure Math., 26(1973), 413-417. MR 0338273 (49:3039)
  • [Jan1] C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc., 488(1993), 1-111. MR 1134591 (93g:22018)
  • [Jan2] C. Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math., 119(1997), 1213-1262. MR 1481814 (99b:22028)
  • [Jan3] C. Jantzen, Some remarks on degenerate principal series, Pacific J. Math., 186(1998), 67-87. MR 1665057 (99j:22018)
  • [Jan4] C. Jantzen, Square-integrable representations for symplectic and odd-orthogonal groups, Canad. J. Math., 52(2000), 539-581. MR 1758232 (2001f:22056)
  • [Kat] S.-I. Kato, Duality for representations of a Hecke algebra, Proc. Amer. Math. Soc., 119(1993), 941-946. MR 1215028 (94g:20060)
  • [K-Z] H. Knight and A. Zelevinsky, Representations of quivers of type A and multisegment duality, Adv. Math., 117(1996), 273-293. MR 1371654 (97e:16029)
  • [Kon] T. Konno, A note on the Langlands classification and irreducibility of induced representations of $ p$-adic groups, Kyushu J. Math., 57(2003), 383-409. MR 2050093 (2005b:22020)
  • [M-W] C. M\oeglin and J.-L. Waldspurger, Sur l'involution de Zelevinski, J. Reine Angew. Math., 372(1986), 136-177. MR 863522 (88c:22019)
  • [S-S] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. IHES, 85(1997), 97-191. MR 1471867 (98m:22023)
  • [Sil] A. Silberger, The Langlands quotient theorem for $ p$-adic groups, Math. Ann., 236(1978), 95-104. MR 0507262 (58:22413)
  • [Tad1] M. Tadic, Induced representations of $ GL(n,A)$ for $ p$-adic division algebras $ A$, J. Reine Angew. Math., 405(1990), 48-77. MR 1040995 (91i:22025)
  • [Tad2] M. Tadic, Structure arising from induction and Jacquet modules of representations of classical $ p$-adic groups, J. Algebra, 177(1995), 1-33. MR 1356358 (97b:22023)
  • [Tad3] M. Tadic, On reducibility of parabolic induction, Israel J. Math., 107(1998), 29-91. MR 1658535 (2001d:22012)
  • [Zel] A. Zelevinsky, Induced representations of reductive $ p$-adic groups $ II$, On irreducible representations of $ GL(n)$, Ann. Sci. École Norm. Sup., 13 (1980), 165-210. MR 584084 (83g:22012)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 22E50

Retrieve articles in all journals with MSC (2000): 22E50

Additional Information

Chris Jantzen
Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858

Received by editor(s): October 11, 2006
Published electronically: April 18, 2007
Additional Notes: This research was supported in part by NSA grant H98230-04-1-0029 and the East Carolina University College of Arts and Sciences
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society