A class of perverse sheaves on a partial flag manifold

Author:
G. Lusztig

Journal:
Represent. Theory **11** (2007), 122-171

MSC (2000):
Primary 20G99

DOI:
https://doi.org/10.1090/S1088-4165-07-00320-2

Published electronically:
August 29, 2007

MathSciNet review:
2336607

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a class of perverse sheaves on a partial flag manifold of a connected reductive group defined over a finite field which are equivariant for the action of the group of rational points of . The definition of this class is similar to the definition of parabolic character sheaves.

**[BE]**R. Bédard,*On the Brauer liftings for modular representations*, J. Algebra**93**(1985), 332-353. MR**786758 (87a:20041)****[BBD]**A. Beilinson, J. Bernstein and P. Deligne,*Faisceaux pervers*, Astérisque**100**(1982), 5-171. MR**751966 (86g:32015)****[Bo]**A. Borel,*Linear algebraic groups*, Benjamin, New York, Amsterdam, 1969. MR**0251042 (40:4273)****[DL]**P. Deligne and G. Lusztig,*Representations of reductive groups over finite fields*, Ann. Math.**103**(1976), 103-161. MR**0393266 (52:14076)****[L1]**G. Lusztig,*Characters of reductive groups over a finite field, Ann. Math. Studies 107*, Princeton U. Press, 1984. MR**742472 (86j:20038)****[L2]**G. Lusztig,*Character sheaves I*, Adv. Math.**56**(1985), 193-237; II, Adv. Math.**57**(1985), 226-265. MR**792706 (87b:20055)**; MR**0806210 (87m:20118a)****[L3]**G. Lusztig,*Green functions and character sheaves*, Ann. Math.**131**(1990), 355-408. MR**1043271 (91c:20054)****[L4]**G. Lusztig,*Homology bases arising from reductive groups over a finite field*, in ``Algebraic groups and their representations'', ed. R. W. Carter et al., Kluwer Acad. Publ., 1998, pp. 53-72. MR**1670764 (2000b:20054)****[L5]**G. Lusztig,*Parabolic character sheaves I, II*, Moscow Math. J.**4**(2004), 153-179, 869-896. MR**2074987 (2006d:20091a)**; MR**2124170 (2006d:20091b)****[L6]**G. Lusztig,*Character sheaves on disconnected groups, VI*, Represent. Theory (electronic)**8**(2004), 377-413. MR**2084488 (2005h:20112)**

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
20G99

Retrieve articles in all journals with MSC (2000): 20G99

Additional Information

**G. Lusztig**

Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

DOI:
https://doi.org/10.1090/S1088-4165-07-00320-2

Received by editor(s):
December 19, 2006

Published electronically:
August 29, 2007

Additional Notes:
The author was supported in part by the National Science Foundation

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.