Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Geometric braid group action on derived categories of coherent sheaves

Author: Simon Riche; with a joint appendix with Roman Bezrukavnikov
Journal: Represent. Theory 12 (2008), 131-169
MSC (2000): Primary 14M15; Secondary 20F55, 18E30
Published electronically: March 10, 2008
MathSciNet review: 2390670
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give, for semi-simple groups without factors of type $ \mathbf{G}_2$, a geometric construction of a braid group action on $ \mathcal{D}^b \operatorname{Coh}(\widetilde{\mathfrak{g}})$ extending the action constructed by Bezrukavnikov, Mirković and Rumynin in the context of localization in positive characteristic. It follows that this action extends to characteristic zero, where it also has some nice representation-theoretic interpretations. The argument uses a presentation of the affine braid group analogous to the ``Bernstein presentation'' of the corresponding Hecke algebra (this presentation was suggested by Lusztig; it is worked out in the appendix, written jointly with Roman Bezrukavnikov).

References [Enhancements On Off] (What's this?)

  • [SGA6] P. Berthelot, A. Grothendieck, L. Illusie, SGA 6, Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Math. 225, Springer, 1971. MR 0354655 (50:7133)
  • [B1] R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), preprint on arXiv: AG/0005152v1.
  • [B2] R. Bezrukavnikov, Noncommutative counterparts of the Springer resolution, Proc. I.C.M., Madrid, Spain, 2006, vol. 2, 1119-1144. MR 2275638
  • [BMR] R. Bezrukavnikov, I. Mirković, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, with an appendix by R. Bezrukavnikov and S. Riche, preprint on arXiv: RT/0205144v8, to appear in Ann. of Math.
  • [BMR2] R. Bezrukavnikov, I. Mirković, D. Rumynin, Singular localization and intertwining functors for semisimple Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 1-55. MR 2285230 (2007k:17024)
  • [Bo] A. Borel et al., Algebraic D-modules, Academic Press, 1987. MR 882000 (89g:32014)
  • [BK] M. Brion, S. Kumar, Frobenius splitting methods in geometry and representation theory, Birkhäuser, 2004. MR 2107324 (2005k:14104)
  • [BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, 1993. MR 1251956 (95h:13020)
  • [BV] W. Bruns, U. Vetter, Determinantal rings, Lecture Notes in Math. 1327, Springer, 1988. MR 953963 (89i:13001)
  • [Ca] A. Căldăraru, The Mukai pairing, I: the Hochschild structure, preprint on arXiv: AG/0308079v2.
  • [CG] N. Chriss, V. Ginzburg, Representation theory and complex geometry, Birkhäuser, 1997. MR 1433132 (98i:22021)
  • [G1] V. Ginzburg, $ \mathfrak{G}$-modules, Springer's representations and bivariant Chern classes, Adv. Math. 61 (1986), 1-48. MR 847727 (87k:17014)
  • [G2] V. Ginzburg, Lagrangian construction of representations of Hecke algebras, Adv. Math. 63 (1987), 100-112. MR 871082 (88e:22022)
  • [EGA I] A. Grothendieck, EGA I, avec la collaboration de J. Dieudonné, Springer, 1971.
  • [EGA III$ _1$] A. Grothendieck, EGA III$ _1$, Étude cohomologique des faisceaux cohérents, avec la collaboration de J. Dieudonné, Publ. Math. Inst. Hautes Études Sci. 11 (1961).
  • [GW] S. Gukov, E. Witten, Gauge theory, ramification, and the geometric Langlands program, preprint on arXiv: hep-th/0612073v1.
  • [H1] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, 1966. MR 0222093 (36:5145)
  • [H2] R. Hartshorne, Algebraic geometry, Springer, 1977. MR 0463157 (57:3116)
  • [Hu] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Univ. Press, 1990. MR 1066460 (92h:20002)
  • [IM] N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of Hecke rings of p-adic Chevalley groups, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 5-48. MR 0185016 (32:2486)
  • [KT] M. Khovanov, R. Thomas, Braid cobordisms, triangulated categories, and flag varieties, preprint on arXiv: QA/0609335v1.
  • [L1] G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. Math. 37, 2 (1980), 121-164. MR 591724 (82b:20059)
  • [L2] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-635. MR 991016 (90e:16049)
  • [L3] G. Lusztig, Bases in equivariant K-theory I, Represent. Theory 2 (1998), 298-369. MR 1637973 (99i:19005)
  • [L4] G. Lusztig, Bases in equivariant K-theory II, Represent. Theory 3 (1999), 281-353. MR 1714628 (2000h:20085)
  • [L5] G. Lusztig, Notes on affine Hecke algebras, in Iwahori-Hecke algebras and their representation theory, 71-103, Lecture Notes in Math. 1804, Springer, 2002. MR 1979925 (2004d:20006)
  • [M] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Univ. Press, 2003. MR 1976581 (2005b:33021)
  • [Ma] H. Matsumura, Commutative algebra, second edition, Benjamin, 1980. MR 575344 (82i:13003)
  • [MR] I. Mirković, D. Rumynin, Centers of reduced enveloping algebras, Math. Z. 231 (1999), 123-132. MR 1696760 (2000i:17032)
  • [R] S. Riche, Koszul duality and modular representations of semi-simple Lie algebras, in preparation.
  • [Sp] T. A. Springer, Linear algebraic groups, Second edition, Birkhäuser, 1998. MR 1642713 (99h:20075)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 14M15, 20F55, 18E30

Retrieve articles in all journals with MSC (2000): 14M15, 20F55, 18E30

Additional Information

Simon Riche
Affiliation: Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu (UMR 7586 du CNRS), Équipe d’Analyse Algébrique, 175, rue du Chevaleret, 75013 Paris, France

Roman Bezrukavnikov
Affiliation: Massachusetts Institute of Technology, Cambridge, Massachusetts

Received by editor(s): March 12, 2007
Received by editor(s) in revised form: July 23, 2007
Published electronically: March 10, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society