Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Some homological properties of the category $ \mathcal{O}$, II


Author: Volodymyr Mazorchuk
Journal: Represent. Theory 14 (2010), 249-263
MSC (2000): Primary 16E10, 16E30, 16G99, 17B10
DOI: https://doi.org/10.1090/S1088-4165-10-00368-7
Published electronically: March 1, 2010
MathSciNet review: 2602033
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show, in full generality, that Lusztig's $ \mathbf{a}$-function describes the projective dimension of both indecomposable tilting modules and indecomposable injective modules in the regular block of the BGG category $ \mathcal{O}$, proving a conjecture from the first paper. On the way we show that the images of simple modules under projective functors can be represented in the derived category by linear complexes of tilting modules. These complexes, in turn, can be interpreted as the images of simple modules under projective functors in the Koszul dual of the category $ \mathcal{O}$. Finally, we describe the dominant projective modules and also the projective-injective modules in some subcategories of $ \mathcal{O}$ and show how one can use categorification to decompose the regular representation of the Weyl group into a direct sum of cell modules, extending the results known for the symmetric group (type $ A$).


References [Enhancements On Off] (What's this?)

  • [AS] H. Andersen, C. Stroppel, Twisting functors on $ \mathcal{O}$. Represent. Theory 7 (2003), 681-699. MR 2032059 (2004k:17010)
  • [BB] A. Beilinson, J. Bernstein, Localisation de $ \mathfrak{g}$-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15-18. MR 610137 (82k:14015)
  • [BGS] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473-527. MR 1322847 (96k:17010)
  • [BG] I. Bernstein, S. Gelfand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compositio Math. 41 (1980), no. 2, 245-285. MR 581584 (82c:17003)
  • [BGG] I. Bernstein, I. Gelfand, S. Gelfand, A certain category of $ {\mathfrak{g}}$-modules. Funkcional. Anal. i Prilozen. 10 (1976), no. 2, 1-8. MR 0407097 (53:10880)
  • [BjBr] A. Björner, F. Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005. MR 2133266 (2006d:05001)
  • [BK] J.-L. Brylinski, M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64 (1981), no. 3, 387-410. MR 632980 (83e:22020)
  • [BS] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra II: Koszulity, preprint arXiv:0806.3472; to appear in Transf. Groups.
  • [Ha] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. MR 935124 (89e:16035)
  • [Hu] J. Humphreys, Representations of semisimple Lie algebras in the BGG category $ \mathcal{O}$. Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI, 2008. MR 2428237 (2009f:17013)
  • [Ir1] R. Irving, Projective modules in the category $ \mathcal{O}\sb S$: Self-duality. Trans. Amer. Math. Soc. 291 (1985), no. 2, 701-732. MR 800259 (87i:17005)
  • [Ir2] R. Irving, Projective modules in the category $ \mathcal{O}\sb S$: Loewy series. Trans. Amer. Math. Soc. 291 (1985), no. 2, 733-754. MR 800260 (87h:17007)
  • [IS] R. Irving, B. Shelton, Loewy series and simple projective modules in the category $ {\mathcal O}_S$. Pacific J. Math. 132 (1988), no. 2, 319-342. MR 934173 (89m:17012a)
  • [Jo] A. Joseph, Kostant's problem, Goldie rank and the Gelfand-Kirillov conjecture. Invent. Math. 56 (1980), no. 3, 191-213. MR 561970 (82f:17008)
  • [KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165-184. MR 560412 (81j:20066)
  • [KhMa] O. Khomenko, V. Mazorchuk, On Arkhipov's and Enright's functors. Math. Z. 249 (2005), no. 2, 357-386. MR 2115448 (2005k:17004)
  • [KMS] M. Khovanov, V. Mazorchuk, C. Stroppel, A categorification of integral Specht modules. Proc. Amer. Math. Soc. 136 (2008), no. 4, 1163-1169. MR 2367090 (2009j:17004)
  • [KSX] S. König, I. Slungård, C. Xi, Double centralizer properties, dominant dimension, and tilting modules. J. Algebra 240 (2001), no. 1, 393-412. MR 1830559 (2002c:16018)
  • [Ka] J. Kåhrström, Kostant's problem and parabolic subgroups, Glasgow Math. J. 52 (2010), 19-32.
  • [KM] J. Kåhrström, V. Mazorchuk, A new approach to Kostant's problem, preprint arXiv:0712.3117; to appear in Algebra and Number Theory.
  • [Lu1] G. Lusztig, Cells in affine Weyl groups. Algebraic groups and related topics (Kyoto/Nagoya, 1983), 255-287, Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985. MR 803338 (87h:20074)
  • [Lu2] G. Lusztig, Cells in affine Weyl groups. II. J. Algebra 109 (1987), no. 2, 536-548. MR 902967 (88m:20103a)
  • [Mat] A. Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups. J. London Math. Soc. (2) 54 (1996), no. 3, 475-488. MR 1413892 (97h:20008)
  • [Ma1] V. Mazorchuk, Applications of the category of linear complexes of tilting modules associated with the category $ \mathcal{O}$, Alg. Rep. Theory 12 (2009), no. 6, 489-512.
  • [Ma2] V. Mazorchuk, Some homological properties of the category $ \mathcal{O}$. Pacific J. Math. 232 (2007), no. 2, 313-341. MR 2366357 (2008m:17013)
  • [Ma3] V. Mazorchuk, A twisted approach to Kostant's problem. Glasgow Math. J. 47 (2005), no. 3, 549-561. MR 2202066 (2007a:17018)
  • [MO1] V. Mazorchuk, S. Ovsienko, Finitistic dimension of properly stratified algebras. Adv. Math. 186 (2004), no. 1, 251-265. MR 2065514 (2005c:16012)
  • [MO2] V. Mazorchuk, S. Ovsienko, A pairing in homology and the category of linear tilting complexes for a quasi-hereditary algebra, with an appendix by C. Stroppel, J. Math. Kyoto Univ. 45 (2005), 711-741. MR 2226627 (2007d:16015)
  • [MOS] V. Mazorchuk, S. Ovsienko, C. Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129-1172. MR 2457393
  • [MS1] V. Mazorchuk, C. Stroppel, On functors associated to a simple root. J. Algebra 314 (2007), no. 1, 97-128. MR 2331754 (2008e:17005)
  • [MS2] V. Mazorchuk, C. Stroppel, Categorification of Wedderburn's basis for $ \mathbb{C}[S_n]$. Arch. Math. (Basel) 91 (2008), no. 1, 1-11. MR 2420892 (2009g:17006)
  • [MS3] V. Mazorchuk, C. Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules. Adv. Math. 219 (2008), no. 4, 1363-1426. MR 2450613
  • [MS4] V. Mazorchuk, C. Stroppel, Projective-injective modules, Serre functors and symmetric algebras. J. Reine Angew. Math. 616 (2008), 131-165. MR 2369489 (2009e:16027)
  • [Ne] M. Neunhöffer, Kazhdan-Lusztig basis, Wedderburn decomposition, and Lusztig's homomorphism for Iwahori-Hecke algebras. J. Algebra 303 (2006), no. 1, 430-446. MR 2253671 (2008a:20012)
  • [RC] A. Rocha-Caridi, Splitting criteria for $ {\mathfrak{g}}$-modules induced from a parabolic and the Berňstein-Gel'fand-Gel'fand resolution of a finite-dimensional, irreducible $ {\mathfrak{g}}$-module. Trans. Amer. Math. Soc. 262 (1980), no. 2, 335-366. MR 586721 (82f:17006)
  • [RH] S. Ryom-Hansen, Koszul duality of translation- and Zuckerman functors. J. Lie Theory 14 (2004), no. 1, 151-163. MR 2040174 (2005g:17018)
  • [So1] W. Soergel, Kategorie $ \mathcal{O}$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc. 3 (1990), no. 2, 421-445. MR 1029692 (91e:17007)
  • [So2] W. Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37-68. MR 1445511 (99d:17023)
  • [St] C. Stroppel, Category $ \mathcal{O}$: Gradings and translation functors, J. Algebra 268, no. 1, 301-326. MR 2005290 (2004i:17007)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 16E10, 16E30, 16G99, 17B10

Retrieve articles in all journals with MSC (2000): 16E10, 16E30, 16G99, 17B10


Additional Information

Volodymyr Mazorchuk
Affiliation: Department of Mathematics, Uppsala University, SE-751 06, Uppsala, Sweden
Email: mazor@math.uu.se

DOI: https://doi.org/10.1090/S1088-4165-10-00368-7
Keywords: Category $\mathcal {O}$; tilting module; Lusztig's $\mathbf {a}$-function; complex; Koszul dual; categorification; projective dimension
Received by editor(s): September 15, 2009
Received by editor(s) in revised form: October 3, 2009
Published electronically: March 1, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society