Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Hall polynomials for affine quivers


Author: Andrew Hubery
Journal: Represent. Theory 14 (2010), 355-378
MSC (2010): Primary 16G20
DOI: https://doi.org/10.1090/S1088-4165-10-00374-2
Published electronically: April 30, 2010
MathSciNet review: 2644456
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use Green's comultiplication formula to prove that Hall polynomials exist for all Dynkin and affine quivers. For Dynkin and cyclic quivers this approach provides a new and simple proof of the existence of Hall polynomials. For non-cyclic affine quivers these polynomials are defined with respect to the decomposition classes of Bongartz and Dudek, a generalisation of the Segre classes for square matrices.


References [Enhancements On Off] (What's this?)

  • 1. V.I. Arnold, `Matrices depending on parameters', Uspehi Mat. Nauk 26 (1971), 101-114. MR 0301242 (46:400)
  • 2. M. Auslander, I. Reiten and S.O. Smalø, Representation theory of artin algebras, Cambridge Studies in Advanced Mathematics 36 (Cambridge Univ. Press, Cambridge, 1997). MR 1476671 (98e:16011)
  • 3. P. Baumann and C. Kassel, `The Hall algebra of the category of coherent sheaves on the projective line', J. Reine Angew. Math. 533 (2001), 207-233. MR 1823869 (2002g:14019)
  • 4. K. Bongratz and D. Dudek, `Decomposition classes for representations of tame quivers', J. Algebra 240 (2001), 268-288. MR 1830554 (2002e:16022)
  • 5. P. Caldero and F. Chapoton, `Cluster algebras as Hall algebras of quiver representations', Comment. Math. Helv. 81 (2006), 595-616. MR 2250855 (2008b:16015)
  • 6. P. Caldero and M. Reineke, `On the quiver Grassmannian in the acyclic case', J. Pure Appl. Algebra 212 (2008), 2369-2380. MR 2440252 (2009f:14102)
  • 7. W. Crawley-Boevey, `Exceptional sequences of representations of quivers', Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992), 117-124, Carleton-Ottawa Math. Lecture Note Ser. 14 (Carleton Univ., Ottawa, ON, 1992). MR 1206935 (94c:16017)
  • 8. B. Deng and J. Xiao, `A new approach to Kac's theorem on representations of valued quivers', Math. Z. 245 (2003), 183-199. MR 2023959 (2004k:16032)
  • 9. V. Dlab and C.M. Ringel, `Indecomposable representations of graphs and algebras', Mem. Amer. Math. Soc. 6 (1976), no. 173. MR 0447344 (56:5657)
  • 10. P. Gabriel, `Unzerlegbare Darstellungen, I.', Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309. MR 0332887 (48:11212)
  • 11. C.G. Gibson, `Regularity of the Segre stratification', Math. Proc. Cambridge Philos. Soc. 80 (1976), 91-97. MR 0414928 (54:3020)
  • 12. J.A. Green, `Hall algebras, hereditary algebras and quantum groups', Invent. Math. 120 (1995), 361-377. MR 1329046 (96c:16016)
  • 13. V.G. Kac, `Infinite root systems, representations of graphs and invariant theory', Invent. Math. 56 (1980), 57-92. MR 557581 (82j:16050)
  • 14. V.G. Kac. Infinite dimensional Lie algebras (3rd ed.) (Cambridge University Press, Cambridge, 1990). MR 1104219 (92k:17038)
  • 15. A. Hubery, `Symmetric functions and the centre of the Ringel-Hall algebra of a cyclic quiver', Math. Z. 251 (2005), 705-719. MR 2190352 (2006i:16019)
  • 16. I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd. edition, Oxford Math. Monographs (The Clarendon Press, Oxford Univ. Press, New York, 1995). MR 1354144 (96h:05207)
  • 17. M. Reineke, `Counting rational points of quiver moduli', Internat. Math. Research Notices (2006). MR 2250021 (2008d:14020)
  • 18. C. Riedtmann, `Lie algebras generated by indecomposables', J. Algebra 170 (1994), 526-546. MR 1302854 (96e:16013)
  • 19. C.M. Ringel, `Hall algebras and quantum groups', Invent. Math. 101 (1990), 583-591. MR 1062796 (91i:16024)
  • 20. C.M. Ringel, `Hall polynomials for the representation-finite hereditary algebras', Adv. Math. 84 (1990), 137-178. MR 1080975 (92e:16010)
  • 21. C.M. Ringel, `The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type $ \tilde A_n$', Proc. London Math. Soc. (3) 66 (1993), 507-537. MR 1207546 (94g:16013)
  • 22. C.M. Ringel, `Green's theorem on Hall algebras', Representation theory of algebras and related topics (Mexico City, 1994), 185-245, CMS Conf. Proc. 19 (Amer. Math. Soc., Providence, RI, 1996). MR 1388564 (97h:16014)
  • 23. C.M. Ringel, `Exceptional objects in hereditary categories', Representation theory of groups, algebras, and orders (Constanta, 1995), 150-158, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 4 (1996). MR 1428463 (98j:18016)
  • 24. B. Sevenhant and M. Van den Bergh, `A relation between a conjecture of Kac and the structure of the Hall algebra', J. Pure Appl. Algebra 160 (2001), 319-332. MR 1836006 (2002f:17031)
  • 25. C. Szántó, `Hall numbers and the composition algebra of the Kronecker algebra', Algebra Represent. Theory 9 (2006), 465-495. MR 2252656 (2007g:16024)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 16G20

Retrieve articles in all journals with MSC (2010): 16G20


Additional Information

Andrew Hubery
Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Email: a.w.hubery@leeds.ac.uk

DOI: https://doi.org/10.1090/S1088-4165-10-00374-2
Received by editor(s): October 8, 2007
Published electronically: April 30, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society