Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Gold Open Access
Representation Theory
Representation Theory
ISSN 1088-4165


On the Fourier inversion formula for the full modular group

Author: Keith R. Ouellette
Journal: Represent. Theory 15 (2011), 112-125
MSC (2010): Primary 22E45; Secondary 11F72
Published electronically: February 7, 2011
MathSciNet review: 2772585
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We offer a new proof of the Fourier inversion and Plancherel formulae for Maass-Eisenstein wave packets. The proof uses truncation, basic analysis, and classical Fourier theory. Brief sketches of the proofs due to Langlands, Lapid, and Casselman are then presented for comparison.

References [Enhancements On Off] (What's this?)

  • 1. James G. Arthur, A (very brief) history of the trace formula, A note on, 2007.
  • 2. Armand Borel, Automorphic forms on 𝑆𝐿₂(𝑅), Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. MR 1482800 (98j:11028)
  • 3. Robert S. Doran, Ze-Li Dou, and George T. Gilbert (eds.), Automorphic forms, automorphic representations, and arithmetic, Proceedings of Symposia in Pure Mathematics, vol. 66, American Mathematical Society, Providence, RI, 1999. MR 1703754 (2000c:11003)
  • 4. Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462 (2000c:00001)
  • 5. Tomio Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. MR 0429749 (55 #2759)
  • 6. R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539 (40 #2784)
  • 7. Erez Lapid, On Arthur's asymptotic inner product formula of truncated Eisenstein series, to appear in Clay Mathematics Proceedings.
  • 8. Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 0031519 (11,163c)
  • 9. Colette Mœglin and Jean-Loup Waldspurger, Décomposition spectrale et séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag, Basel, 1994 (French, with English summary). Une paraphrase de l’Écriture. [A paraphrase of Scripture]. MR 1261867 (95d:11067)
  • 10. W. Roelcke, Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen erster Art, Math. Ann. 132 (1956), 121–129 (German). MR 0082562 (18,571b)
  • 11. Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062 (51 #1315)
  • 12. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 0088511 (19,531g)
  • 13. Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 177–189. MR 0176097 (31 #372)
  • 14. V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge Studies in Advanced Mathematics, vol. 16, Cambridge University Press, Cambridge, 1999. Corrected reprint of the 1989 original. MR 1725738 (2000m:22011)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E45, 11F72

Retrieve articles in all journals with MSC (2010): 22E45, 11F72

Additional Information

Keith R. Ouellette
Affiliation: Department of Mathematics, College of the Holy Cross, Worcester, Massachusetts 01610

PII: S 1088-4165(2011)00400-3
Received by editor(s): October 21, 2006
Received by editor(s) in revised form: December 10, 2010
Published electronically: February 7, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia