Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Cohomological finite generation for restricted Lie superalgebras and finite supergroup schemes


Author: Christopher M. Drupieski
Journal: Represent. Theory 17 (2013), 469-507
MSC (2010): Primary 17B56, 20G10; Secondary 17B55
DOI: https://doi.org/10.1090/S1088-4165-2013-00440-5
Published electronically: September 5, 2013
MathSciNet review: 3096330
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the cohomology ring of a finite-dimensional restricted Lie superalgebra over a field of characteristic $ p > 2$ is a finitely-generated algebra. Our proof makes essential use of the explicit projective resolution of the trivial module constructed by J. Peter May for any graded restricted Lie algebra. We then prove that the cohomological finite generation problem for finite supergroup schemes over fields of odd characteristic reduces to the existence of certain conjectured universal extension classes for the general linear supergroup $ GL(m\vert n)$ that are similar to the universal extension classes for $ GL_n$ exhibited by Friedlander and Suslin.


References [Enhancements On Off] (What's this?)

  • [1] Irfan Bagci, Cohomology and support varieties for restricted Lie superalgebras, Algebr. Represent. Theory (2012).
  • [2] Petter Andreas Bergh and Steffen Oppermann, Cohomology of twisted tensor products, J. Algebra 320 (2008), no. 8, 3327-3338. MR 2450729 (2009f:16012), https://doi.org/10.1016/j.jalgebra.2008.08.005
  • [3] Nicolas Bourbaki, Commutative algebra. Chapters 1-7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation. MR 1727221 (2001g:13001)
  • [4] Nicolas Bourbaki, Algebra II. Chapters 4-7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2003. Translated from the 1981 French edition by P. M. Cohn and J. Howie; Reprint of the 1990 English edition [Springer, Berlin; MR1080964 (91h:00003)]. MR 1994218
  • [5] Jonathan Brundan and Alexander Kleshchev, Modular representations of the supergroup $ Q(n)$. I, J. Algebra 260 (2003), no. 1, 64-98. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973576 (2004f:20081), https://doi.org/10.1016/S0021-8693(02)00620-8
  • [6] Henri Cartan and Samuel Eilenberg, Homological algebra, With an appendix by David A. Buchsbaum; Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1956 original. MR 1731415 (2000h:18022)
  • [7] Pavel Etingof and Viktor Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627-654, 782-783 (English, with English and Russian summaries). MR 2119143 (2005j:18006)
  • [8] Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224-239. MR 0137742 (25 #1191)
  • [9] Eric M. Friedlander and Brian J. Parshall, Cohomology of infinitesimal and discrete groups, Math. Ann. 273 (1986), no. 3, 353-374. MR 824427 (87e:22026), https://doi.org/10.1007/BF01450727
  • [10] Eric M. Friedlander and Brian J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), no. 3, 553-562. MR 860682 (88f:17018), https://doi.org/10.1007/BF01389268
  • [11] Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209-270. MR 1427618 (98h:14055a), https://doi.org/10.1007/s002220050119
  • [12] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057 (2004h:20061)
  • [13] Seok-Jin Kang and Jae-Hoon Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. (3) 81 (2000), no. 3, 675-724. MR 1781152 (2001f:17057), https://doi.org/10.1112/S0024611500012661
  • [14] Gongxiang Liu, Support varieties and representation types for basic classical Lie superalgebras, J. Algebra 362 (2012), 157-177. MR 2921636, https://doi.org/10.1016/j.jalgebra.2012.04.010
  • [15] M. Mastnak, J. Pevtsova, P. Schauenburg, and S. Witherspoon, Cohomology of finite-dimensional pointed Hopf algebras, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 377-404. MR 2595743 (2011b:16116), https://doi.org/10.1112/plms/pdp030
  • [16] Akira Masuoka, The fundamental correspondences in super affine groups and super formal groups, J. Pure Appl. Algebra 202 (2005), no. 1-3, 284-312. MR 2163412 (2006e:16066), https://doi.org/10.1016/j.jpaa.2005.02.010
  • [17] Akira Masuoka and Alexandr N. Zubkov, Quotient sheaves of algebraic supergroups are superschemes, J. Algebra 348 (2011), 135-170. MR 2852235, https://doi.org/10.1016/j.jalgebra.2011.08.038
  • [18] J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146. MR 0193126 (33:1347)
  • [19] John McCleary, A user's guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722 (2002c:55027)
  • [20] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993. MR 1243637 (94i:16019)
  • [21] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 0265437 (42 #346)
  • [22] Roberto La Scala and Alexandr N. Zubkov, Donkin-Koppinen filtration for general linear supergroups, Algebr. Represent. Theory 15 (2012), no. 5, 883-899. MR 2969281, https://doi.org/10.1007/s10468-011-9269-3
  • [23] Bin Shu and Weiqiang Wang, Modular representations of the ortho-symplectic supergroups, Proc. Lond. Math. Soc. (3) 96 (2008), no. 1, 251-271. MR 2392322 (2009d:20108), https://doi.org/10.1112/plms/pdm040
  • [24] B. B. Venkov, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR 127 (1959), 943-944 (Russian). MR 0108788 (21 #7500)
  • [25] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York, 1979. MR 547117 (82e:14003)
  • [26] Dennis Bouke Westra, Superrings and supergroups, Ph.D. thesis, Universitat Wien, October 2009.
  • [27] A. N. Zubkov, Affine quotients of supergroups, Transform. Groups 14 (2009), no. 3, 713-745. MR 2534805 (2011m:14105), https://doi.org/10.1007/s00031-009-9055-z

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 17B56, 20G10, 17B55

Retrieve articles in all journals with MSC (2010): 17B56, 20G10, 17B55


Additional Information

Christopher M. Drupieski
Affiliation: Department of Mathematical Sciences, DePaul University, Chicago, Illinois 60614
Email: cdrupies@depaul.edu

DOI: https://doi.org/10.1090/S1088-4165-2013-00440-5
Received by editor(s): January 9, 2013
Received by editor(s) in revised form: May 8, 2013
Published electronically: September 5, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society