Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Geometric local theta correspondence for dual reductive pairs of type II at the Iwahori level

Author: Banafsheh Farang-Hariri
Journal: Represent. Theory 17 (2013), 610-646
MSC (2010): Primary 14D24, 11F27; Secondary 22E57, 20C08
Published electronically: December 9, 2013
MathSciNet review: 3139267
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we are interested in the geometric local theta correspondence at the Iwahori level for dual reductive pairs $ (G,H)$ of type II over a non-Archimedean field of characteristic $ p\neq 2$ in the framework of the geometric Langlands program. We consider the geometric version of the $ I_{H}\times I_{G}$-invariants of the Weil representation $ \mathcal {S}^{I_{H}\times I_{G}}$ as a bimodule under the action of Iwahori-Hecke algebras $ \mathcal {H}_{I_{G}}$ and $ \mathcal {H}_{I_{H}}$ and we give some partial geometric description of the corresponding category under the action of Hecke functors. We also define geometric Jacquet functors for any connected reductive group $ G$ at the Iwahori level and we show that they commute with the Hecke action of the $ \mathcal {H}_{I_{L}}$-subelgebra of $ \mathcal {H}_{I_{G}}$ for a Levi subgroup $ L$.

References [Enhancements On Off] (What's this?)

  • [AB09] Sergey Arkhipov and Roman Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135-183. With an appendix by Bezrukavrikov and Ivan Mirković. MR 2506322 (2010m:14024),
  • [Ada89] J. Adams, $ L$-functoriality for dual pairs, Astérisque 171-172 (1989), 85-129. Orbites unipotentes et représentations, II. MR 1021501 (91e:22020)
  • [Art84] James Arthur, On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 1-49. MR 748504 (85k:11025),
  • [Bez] R. Bezrukavnikov.
    On two geometric realizations of an affine Hecke algebra.
  • [BG02] A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287-384. MR 1933587 (2003k:11109),
  • [Bor76] Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259. MR 0444849 (56 #3196)
  • [Bra03] Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209-216. MR 1996415 (2004f:14037),
  • [ENV04] M. Emerton, D. Nadler, and K. Vilonen, A geometric Jacquet functor, Duke Math. J. 125 (2004), no. 2, 267-278. MR 2096674 (2005m:20108),
  • [FG06] Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260. MR 2263193 (2008e:17023),
  • [FH12] Banafsheh Farang-Hariri, La fonctorialité d'Arthur-Langlands locale géométrique et la correspondance de Howe au niveau Iwahori, C. R. Math. Acad. Sci. Paris 350 (2012), no. 17-18, 813-816 (French, with English and French summaries). MR 2989382,
  • [FH13] B. Farang-Hariri,
    Geometric tamely ramified local theta correspondence in the framework of the geometric Langlands program,, 2013.
  • [Gai01] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253-280. MR 1826370 (2002d:14072),
  • [IM65] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of $ {\mathfrak{p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5-48. MR 0185016 (32 #2486)
  • [Kud86] Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229-255. MR 818351 (87e:22037),
  • [LL09] Vincent Lafforgue and Sergey Lysenko, Geometric Weil representation: local field case, Compos. Math. 145 (2009), no. 1, 56-88. MR 2480495 (2010c:22024),
  • [Lus83] George Lusztig, Singularities, character formulas, and a $ q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208-229. MR 737932 (85m:17005)
  • [Lus89] George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599-635. MR 991016 (90e:16049),
  • [Lys11] Sergey Lysenko, Geometric theta-lifting for the dual pair $ \mathbb{S}\mathbb{O}_{2m},\mathbb{S}{\rm p}_{2n}$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 427-493 (English, with English and French summaries). MR 2839456 (2012k:22025)
  • [Mín08] Alberto Mínguez, Correspondance de Howe explicite: paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 717-741 (French, with English and French summaries). MR 2504432 (2010h:22024)
  • [MV07] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95-143. MR 2342692 (2008m:22027),
  • [MVW87] C. Mœglin, M-F. Vignéras, and J-L. Waldspurger.
    Correspondances de Howe sur un corps $ p$-adique, volume 1291 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin, 1987.
  • [Pra05] Amritanshu Prasad, On Bernstein's presentation of Iwahori-Hecke algebras and representations of split reductive groups over non-Archimedean local fields, Bull. Kerala Math. Assoc. Special Issue (2005), 31-51 (2007). MR 2250034 (2007e:22009)
  • [Ral82] Stephen Rallis, Langlands' functoriality and the Weil representation, Amer. J. Math. 104 (1982), no. 3, 469-515. MR 658543 (84c:10025),

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 14D24, 11F27, 22E57, 20C08

Retrieve articles in all journals with MSC (2010): 14D24, 11F27, 22E57, 20C08

Additional Information

Banafsheh Farang-Hariri
Affiliation: Humboldt-Universitët zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany
Address at time of publication: Université de Paris XI, Laboratoire de Mathématiques, Bât 425, 91405 Orsay Cedex, France

Keywords: Geometric representations theory, local theta correspondence, Iwahori-Hecke algebra, perverse sheaves, affine flag varieties
Received by editor(s): February 26, 2013
Received by editor(s) in revised form: September 24, 2013
Published electronically: December 9, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society