Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the moduli of stable sheaves on some nonreduced projective schemes


Author: Michi-aki Inaba
Journal: J. Algebraic Geom. 13 (2004), 1-27
DOI: https://doi.org/10.1090/S1056-3911-03-00333-3
Published electronically: August 26, 2003
MathSciNet review: 2008714
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the moduli space of stable sheaves on a projective scheme whose structure sheaf has a nilpotent ideal with some property. We introduce a stratification on this moduli space. Each stratum is the moduli space of some extensions of sheaves. This stratification is described on a curve with multiple structure and on a double plane, and the structure of each stratum is studied. In the case of a curve with multiple structure, we also study a local structure of the moduli space of stable sheaves.


References [Enhancements On Off] (What's this?)

  • 1. A. Altman and S. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50-112.
  • 2. G. Faltings, Moduli-stacks for bundles on semistable curves, Math. Ann. 304 (1996) 489-515.
  • 3. D. Gieseker and J. Li, Irreducibility of moduli of rank-$2$ vector bundles on algebraic surfaces, J. Differential Geometry 40 (1994), 23-104.
  • 4. A. Grothendieck, Éléments de géométrie algébrique, Chaps. I,II,III,IV, Inst. Hautes Études Sci. Publ. Math. Nos. 4,8,11,17,20,24,28,32 (1960-1967).
  • 5. M. Inaba, On the moduli of stable sheaves on a reducible projective scheme and examples on a reducible quadric surface, Nagoya Math. J. 166 (2002), 135-181.
  • 6. T. Kawai and K. Yoshioka, String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000), no. 2, 397-485.
  • 7. H. Lange, Universal families of extensions, J. Algebra 83 (1983), 101-112.
  • 8. A. Langer, Semistable sheaves in positive characteristic, (to appear).
  • 9. J. Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993) no. 7-8, 635-678.
  • 10. J. Le Potier, Faisceaux semi-stables et systèmes cohérents, Vector bundles in algebraic geometry, 179-239, London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press, Cambridge, (1995).
  • 11. J. Le Potier, Systèmes cohérents et structures de niveau, Asterisque 214 (1993).
  • 12. M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978), no. 3, 557-614.
  • 13. M. Maruyama, Construction of moduli spaces of stable sheaves via Simpson's idea, Lecture Notes in Pure and Appl. Math. 179. Dekker, New York, (1996).
  • 14. D. Mumford, Geometric invariant theory, Springer-Verlag, Berlin Heidelberg New York (1965).
  • 15. D. Mumford, Lectures on curves on an algebraic surface, Annals of Math. Studies No. 59, Princeton Univ. Press, (1966).
  • 16. D. S. Nagaraj and C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves I, Proc. Indian Acad. Sci. 107 (1997), no. 2, 101-137.
  • 17. T. Nüßler and G. Trautmann, Multiple Koszul structres on lines and instanton bundles, Internat. J. Math. 5 (1994), no. 3, 373-388.
  • 18. T. Oda and C. S. Seshadri, Compactification of the generalized Jacobian variety. Trans. Am. Math. Soc. 253 (1979) 1-90.
  • 19. C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Birkhäuser, Boston (1980).
  • 20. C. S. Seshadri, Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), no. 3, 225-274.
  • 21. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Asterisque 96. Société Mathématique de France, Paris, (1982).
  • 22. C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci Publ. Math. No. 79 (1994), 47-129.
  • 23. S. Soberon-Chavez, Rank $2$ vector bundles over a complex quadric surface, Quart. J. Math. Oxford Ser. (2), 36 (1985), 159-172.
  • 24. H. Xia, Degenerations of moduli of stable bundles over algebraic curves, Compos. Math. 98 (1995) 305-330.


Additional Information

Michi-aki Inaba
Affiliation: Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
Address at time of publication: Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan
Email: inaba@kusm.kyoto-u.ac.jp, inaba@math.kyushu-u.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-03-00333-3
Received by editor(s): June 27, 2000
Received by editor(s) in revised form: October 21, 2001
Published electronically: August 26, 2003

American Mathematical Society