Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 

 

Toric singularities: Log-blow-ups and global resolutions


Author: Wieslawa Niziol
Journal: J. Algebraic Geom. 15 (2006), 1-29
Published electronically: June 27, 2005
MathSciNet review: 2177194
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that singularities of Kato's log-regular schemes (a base-free analogue of toroidal embeddings) can be resolved globally by a log-blow-up. This is done by showing that the classical desingularization algorithms can be globalized and extended to log-schemes.


References [Enhancements On Off] (What's this?)

  • 1. Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, 10.1007/s002220050141
  • 2. Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, 10.1007/BF01444889
  • 3. J.-L. Brylinski, Eventails et variétés torique, Séminaire sur les singularités des surfaces, Centre de Math. de l'École Polytechnique, Palaiseau 1976-1977, Lect. Notes Math. 777, Springer-Verlag, Berlin, Heidelberg and New York, 1980, 247-288.
  • 4. David A. Cox, Toric varieties and toric resolutions, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 259–284. MR 1748623
  • 5. V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
  • 6. Günter Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer-Verlag, New York, 1996. MR 1418400
  • 7. K. Fujiwara, K. Kato, Logarithmic étale topology theory, preprint, 1995.
  • 8. William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
  • 9. L. Illusie, Logarithmic smoothness and vanishing cycles, preprint, 1996.
  • 10. Luc Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271–322. Cohomologies 𝑝-adiques et applications arithmétiques, II. MR 1922832
  • 11. Takeshi Kajiwara, Logarithmic compactifications of the generalized Jacobian variety, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), no. 2, 473–502. MR 1255052
  • 12. Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
  • 13. Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, 10.2307/2374941
  • 14. K. Kato, Logarithmic degeneration and Dieudonné theory, preprint.
  • 15. G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
  • 16. A. Ogus, Logarithmic de Rham cohomology, preprint, 1997.
  • 17. T. Tsuji, Saturated morphisms of logarithmic schemes, preprint, 1997.


Additional Information

Wieslawa Niziol
Affiliation: Department of Mathematics, College of Science, University of Utah, Salt Lake City, Utah 84112-0090
Email: niziol@math.utah.edu

DOI: https://doi.org/10.1090/S1056-3911-05-00409-1
Received by editor(s): January 6, 2003
Received by editor(s) in revised form: February 10, 2005
Published electronically: June 27, 2005

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2016 University Press, Inc.
Comments: jag-query@ams.org
AMS Website