Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians


Author: Izzet Coskun
Journal: J. Algebraic Geom. 15 (2006), 223-284
DOI: https://doi.org/10.1090/S1056-3911-06-00426-7
Published electronically: January 11, 2006
MathSciNet review: 2199064
Full-text PDF

Abstract | References | Additional Information

Abstract: We describe an algorithm for computing certain characteristic numbers of rational normal surface scrolls using degenerations. As a corollary we obtain an efficient method for computing the corresponding Gromov-Witten invariants of the Grassmannians of lines.


References [Enhancements On Off] (What's this?)

  • [Bv] A. Beauville.
    Complex algebraic surfaces, volume 68 of London Mathematical Society Lecture Note Series.
    Cambridge University Press, Cambridge, 1983. MR 0732439 (85a:14024)
  • [BKT] A. S. Buch, A. Kresch, and H. Tamvakis.
    Gromov-Witten invariants on Grassmannians.
    J. Amer. Math. Soc. 16 (2003), 901-915. MR 1992829 (2004h:14060)
  • [CH] L. Caporaso and J. Harris.
    Counting plane curves of any genus.
    Invent. Math. 131 no.2 (1998), 345-392. MR 1608583 (99i:14064)
  • [Ci] I. Ciocan-Fontanine.
    On quantum cohomology rings of partial flag varieties.
    Duke Math. J. 98 (1999), 485-524. MR 1695799 (2000d:14058)
  • [C1] I. Coskun.
    Degenerations of Rational Normal Scrolls and the Gromov-Witten invariants of Grassmannians.
    in preparation.
  • [C2] I. Coskun.
    The enumerative geometry of Del Pezzo surfaces via degenerations.
    to appear in Amer. J. Math.
  • [Fr] R. Friedman.
    Algebraic surfaces and holomorphic vector bundles.
    Universitext. Springer-Verlag, New York, 1998. MR 1600388 (99c:14056)
  • [Ful] W. Fulton.
    Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
    Springer-Verlag, Berlin, second edition, 1998. MR 1644323 (99d:14003)
  • [FP] W. Fulton and R. Pandharipande.
    Notes on stable maps and quantum cohomology.
    In Algebraic geometry--Santa Cruz 1995, volume 62 Part 2 of Proc. Sympos. Pure Math., pages 45-96. Amer. Math. Soc., 1997. MR 1492534 (98m:14025)
  • [GH] P. Griffiths and J. Harris.
    Principles of Algebraic Geometry.
    Wiley Interscience, 1978. MR 0507725 (80b:14001)
  • [H] J. Harris.
    Algebraic geometry, volume 133 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1995. MR 1416564 (97e:14001)
  • [Ha] R. Hartshorne.
    Algebraic geometry.
    Springer-Verlag, New York, 1977.
    Graduate Texts in Mathematics, No. 52. MR 0463157 (57:3116)
  • [Kl1] S. L. Kleiman.
    The transversality of a general translate.
    Compositio Math. 28 (1974), 287-297. MR 0360616 (50:13063)
  • [Kl2] S. L. Kleiman.
    Problem 15: Rigorous foundation of Schubert's enumerative calculus.
    In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pages 445-482. Proc. Sympos. Pure Math., Vol. XXVIII. Amer. Math. Soc., Providence, R. I., 1976.
  • [Kr] A. Kresch.
    FARSTA, computer program. Available at http://www.maths.warwick. ac.uk/$ \sim$kresch/co/farsta.html.
  • [Sc] H. Schubert.
    Kalkül der abzählenden Geometrie.
    Springer-Verlag, Berlin, 1979.
    Reprint of the 1879 original, with an introduction by Steven L. Kleiman. MR 0555576 (82c:01073)
  • [Tam] H. Tamvakis.
    Gromov-Witten invariants and the quantum cohomology of Grassmannians.
    arXiv:math.AG/0306415.
  • [VX] I. Vainsencher and F. Xavier.
    A compactification of the space of twisted cubics.
    Math. Scand. 91 (2002), 221-243. MR 1931571 (2003j:14073)
  • [V1] R. Vakil.
    The characteristic numbers of quartic plane curves.
    Canad. J. Math. 51 (1999), 1089-1120. MR 1718648 (2000i:14078)
  • [V2] R. Vakil.
    The enumerative geometry of rational and elliptic curves in projective space.
    J. Reine Angew. Math. 529 (2000), 101-153. MR 1799935 (2001j:14072)
  • [V3] R. Vakil.
    The enumerative geometry of rational and elliptic curves in projective space.
    Thesis Harvard University, alg-geom/9709007.


Additional Information

Izzet Coskun
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
Email: coskun@math.harvard.edu, coskun@math.mit.edu

DOI: https://doi.org/10.1090/S1056-3911-06-00426-7
Received by editor(s): February 23, 2004
Received by editor(s) in revised form: September 19, 2004, February 26, 2005, and August 22, 2005
Published electronically: January 11, 2006

American Mathematical Society