Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The Grothendieck-Lefschetz theorem for normal projective varieties


Authors: G. V. Ravindra and V. Srinivas
Journal: J. Algebraic Geom. 15 (2006), 563-590
DOI: https://doi.org/10.1090/S1056-3911-05-00421-2
Published electronically: October 25, 2005
MathSciNet review: 2219849
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that for a normal projective variety $ X$ in characteristic 0, and a base-point free ample line bundle $ L$ on it, the restriction map of divisor class groups $ \operatorname{Cl} (X)\to \operatorname{Cl}(Y)$ is an isomorphism for a general member $ Y\in \vert L\vert$ provided that $ \dim{X}\geq 4$. This is a generalization of the Grothendieck-Lefschetz theorem, for divisor class groups of singular varieties.


References [Enhancements On Off] (What's this?)

  • 1. L. Barbieri-Viale, A. Rosenschon, M. Saito, Deligne's conjecture on 1-motives, Ann. of Math. (2) 158 (2003) 593-633. MR 2018930 (2005b:14021)
  • 2. L. Barbieri-Viale, V. Srinivas, Albanese and Picard 1-motives, Mem. Soc. Math. France 87 (2001). MR 1891270 (2004d:14003)
  • 3. J. G. Biswas, V. Srinivas, Roitman's theorem for singular projective varieties, Compositio Math. 119 (1999) 213-237. MR 1723130 (2001d:14012)
  • 4. P. Deligne, Théorie de Hodge III, Publ. Math. IHES. 44 (1974) 5-77. MR 0498552 (58:16653b)
  • 5. A. Grothendieck, J. Dieudonne, Elements de Geometrie Algebrique I, III, Publ. Math. IHES. 4 (1960), 11 (1961).
  • 6. H. Esnault, E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, Band 20, Birkhäuser (1992). MR 1193913 (94a:14017)
  • 7. W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3rd Series, 2. Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • 8. M. Goresky and R. MacPherson, Stratified Morse Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 14. Springer-Verlag, Berlin, 1988. MR 0932724 (90d:57039)
  • 9. A. Grothendieck,Cohomologie locale des faisceaus coherents et Theoremes de Lefschetz locaux and globale (SGA 2), Advanced studies in Pure Mathematics, North-Holland, Amsterdam (1968). MR 0476737 (57:16294)
  • 10. Robin Hartshorne, Algebraic Geometry, GTM No.52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57:3116)
  • 11. -, Ample Subvarieties of Algebraic Varieties, Lect. Notes in Math. 156, Springer-Verlag (1970). MR 0282977 (44:211)
  • 12. S. Lang, Abelian Varieties, Springer-Verlag, New York-Berlin, 1983 (reprint of 1959 original). MR 0713430 (84g:14041)
  • 13. V. B. Mehta and V. Srinivas, A Characterisation of Rational Singularities, Asian J. Math, Vol. 1, No. 2, 249-271.
  • 14. N. Ramachandran, One-motives and a conjecture of Deligne, J. Algebraic Geom. 13 (2004) 29-80. MR 2008715 (2004i:14051)
  • 15. J.-L. Verdier, Stratifications de Whitney et Theoreme de Bertini-Sard, Invent. Math. 36 (1976), 295-312. MR 0481096 (58:1242)
  • 16. A. Weil, Sur les critéres d'équivalence en géométrie algébrique, Math. Ann. 128 (1954) 95-127. MR 0065219 (16:398e)


Additional Information

G. V. Ravindra
Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
Email: ravindra@math.wustl.edu

V. Srinivas
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India
Email: srinivas@math.tifr.res.in

DOI: https://doi.org/10.1090/S1056-3911-05-00421-2
Received by editor(s): April 21, 2005
Received by editor(s) in revised form: May 31, 2005, and June 15, 2005
Published electronically: October 25, 2005
Additional Notes: Srinivas was partially supported by a Swarnajayanthi Fellowship of the D.S.T

American Mathematical Society