Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The classification of surfaces of general type with nonbirational bicanonical map


Author: Giuseppe Borrelli
Journal: J. Algebraic Geom. 16 (2007), 625-669
DOI: https://doi.org/10.1090/S1056-3911-07-00478-X
Published electronically: June 12, 2007
MathSciNet review: 2357686
Full-text PDF

Abstract | References | Additional Information

Abstract: We classify surfaces of general type whose bicanonical map factors through a rational map of degree 2 to a rational or ruled surface.

We prove that if such a surface has no pencil of genus 2 curves, then it is the smooth minimal model of a double plane branched along a reduced curve with certain singularities, a configuration already suggested by Du Val in the 1950s. This result allows us to complete the classification of surfaces of general type presenting the nonstandard case, with the possible exception of those with $ p_g=q\le 1$.


References [Enhancements On Off] (What's this?)

  • 1. W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin (1984). MR 749574 (86c:32026)
  • 2. A. Beauville, L'inégalité $ p_g\ge 2q-4$ pour les surfaces de type général, Bull. Soc. Math. de France 110 (1982), 343-346. MR 688038 (84f:14026)
  • 3. E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171-219. MR 0318163 (47:6710)
  • 4. G. Borrelli, On regular surfaces of general type with $ p_g=2$ and non-birational bicanonical map. in Algebraic Geometry, A volume in memory of Paolo Francia, Beltrametti et al. (eds.), De Gruyter (2002), 65-78. MR 1954058 (2003k:14049)
  • 5. F. Catanese, Surfaces with $ p_g=q=1$ and their period mapping, in Algebraic Geometry, Lect. Notes in Math. 732 (1979), 1-26. MR 555688 (81c:14018)
  • 6. F. Catanese, On a class of surfaces of general type. in Algebraic Surfaces, CIME, Liguori (1981), 269-284.
  • 7. F.Catanese, C. Cliberto, Surfaces with $ p_g=q=1$, Symposia Math. 323 (1991), 4979.
  • 8. F. Catanese, C. Cliberto, Symmetric products of elliptic curves and surfaces of general type with $ p_g=q=1$, J. of Alg. Geom. 2 (1993), 389-411. MR 1211993 (94i:14040)
  • 9. F. Catanese, O. Debarre, Surfaces with $ K^2=2, p_g=1,q=0$. J. Reine Angew. Math. 395 (1989), 1-55. MR 983058 (89m:14017)
  • 10. F. Catanese, C. Ciliberto, M.Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map. Trans. Amer. Math. Soc. 350 (1998), 275-308. MR 1422597 (98h:14043)
  • 11. C. Ciliberto, P. Francia, M. Mendes Lopes, Remarks on the bicanonical map for surfaces of general type. Math. Z. 224 (1997), 137-166. MR 1427708 (97m:14038)
  • 12. C. Ciliberto, M. Mendes Lopes, On regular surfaces of general type with $ p_g=3$ and non-birational bicanonical map. J. Math. Kyoto Univ. 40 (2000), 79-117. MR 1753500 (2001f:14073)
  • 13. C. Ciliberto, M. Mendes Lopes, On surfaces with $ p_g=2, q=1$ and non-birational bicanonical map, Algebraic Geometry, a Volume in Memory of Paolo Francia, Beltrametti et al. (eds.), De Gruyter, (2002), 117-126. MR 1954060 (2003j:14052)
  • 14. C. Ciliberto, M. Mendes Lopes, On surfaces with $ p\sb g=q=2$ and non-birational bicanonical maps, Adv. Geom. 2 (2002), no. 3, 281-300. MR 1924760 (2004d:14053)
  • 15. O. Debarre, Addendum to Inégalités numérique pour les surfaces de type général, Bull. Soc. Math. France 111 (1983), 301-302. MR 735308 (85b:14052)
  • 16. P. Du Val, On surfaces whose canonical system is hyperelliptic, Canadian J. of Math., 4 (1952), 204-221. MR 0048090 (13:977c)
  • 17. F. Enriques, Le superficie algebriche, Zanichelli, Bologna (1949). MR 0031770 (11:202b)
  • 18. P. Francia, On the base points of the bicanonical system, Symposia Mathematica I.N.D.AM., vol. XXXII, Academic Press (1991), 141-150. MR 1273376 (95a:14004)
  • 19. E. Horikawa, On deformation of quintic surfaces. Invent. Math. 31 (1975), 43-85.
  • 20. E. Horikawa, Algebraic surfaces of general type with small $ c_1^2$ $ V$, J. Fac. Sci. Univ. Tokyo Sect. 1A, Math. 28 (3) (1981), 745-755. MR 656051 (84d:14019)
  • 21. K. Kodaira, Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan 20 (1968), 170-192. MR 0224613 (37:212)
  • 22. D. Morrison, On the moduli of Todorov surfaces. in Algebraic Geometry and Commutative Algebra in honor of Masayoshi Nagata, (1987), 313-355. MR 977767 (90a:14051)
  • 23. M. Mendes Lopes, R. Pardini, Enriques surfaces with eight nodes. Math. Z. 241, (2002), 673-683. MR 1942235 (2004b:14066)
  • 24. M. Mendes Lopes, R. Pardini, The bicanonical map of surfaces with $ p\sb g=0$ and $ K\sp 2\geq 7$. II. Bull. London Math. Soc. 35, (2003), 337-343. MR 1960943 (2004a:14040)
  • 25. M. Mendes Lopes, R. Pardini, Surfaces of general type with $ p\sb g=0,K\sp 2=6$ and non-birational bicanonical map. Math. Annalen 329, Number 3 (July 2004), 535-552. MR 2127989 (2005m:14067)
  • 26. M. Mendes Lopes, R. Pardini, A new family of surfaces with $ p_g = 0$ and $ K^2 = 3$, Ann. Scient. École Norm. Sup., 4e série, 37, (2004), pp. 507-531. MR 2097891 (2005h:14095)
  • 27. M. Mendes Lopes, R. Pardini, The degree of the bicanonical map of a surface with $ p_g=0$. Proc. Amer. Math. Soc. 135 (2007), 1279-1282. (math. AG/0505231). MR 2276635
  • 28. M. Mendes Lopes, R. Pardini, A connected component of the moduli space of surfaces with $ p_g=0$, Topology 40 (2001) 977-991. MR 1860538 (2002g:14052)
  • 29. D. Naie, Surfaces d'Enriques et une construction de surfaces de type general avec $ p_g = 0$, Math. Z. 215(2), (1994), 269-280. MR 1259462 (94m:14055)
  • 30. R. Pardini, The classification of double planes of general type with $ K\sp 2=8$ and $ p\sb g=0$. J. Algebra 259, (2003), 95-118. MR 1953710 (2004a:14041)
  • 31. U. Persson, Chern invariants of surfaces of general type, Compositio Math. 43 (1981), 3-58. MR 631426 (83b:14012)
  • 32. F. Polizzi, Surfaces of general type with $ p_g=q=1, K^2=8$ and bicanonical map of degree $ 2$. Trans. Amer. Math. Soc. 358 (2006), 759-798. MR 2177040 (2006j:14051)
  • 33. I. Reider, Vector bundles of rank $ 2$ and linear systems on algebraic surfaces. Ann. of Math. 127 (1988), 309-316. MR 932299 (89e:14038)
  • 34. C. Rito, On surfaces with $ p_g=q=1$ and non-ruled bicanonical involution. (math. AG/0510302).
  • 35. I. R. Shafarevich, et al. Algebraic Surfaces. Trudy Mat. Inst. Steklov 75 (1965), 1-215, AMS Translations, Providence R.I. (1967). MR 0190143 (32:7557)
  • 36. G. Xiao, Finitude de l'application canonique des surfaces de type general. Bull. Soc. Math. France 113 (1985), 32-51. MR 807825 (87a:14035)
  • 37. G. Xiao, Degree of the bicanonical map of a surface of general type, Amer. J. of Math. 112 (5) (1990), 713-737. MR 1073006 (91i:14030)


Additional Information

Giuseppe Borrelli
Affiliation: Departamento de Matematica, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-540 Recife–PE, Brasil
Email: borrelli@dmat.ufpe.br

DOI: https://doi.org/10.1090/S1056-3911-07-00478-X
Received by editor(s): January 6, 2004
Received by editor(s) in revised form: February 16, 2007
Published electronically: June 12, 2007
Additional Notes: This work was partially supported by EU Research Training Network EAGER (HPRN-CT-2000-00099).
Dedicated: Dedicated to the memory of Professor Paolo Francia

American Mathematical Society