Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Dénombrabilité des classes d'équivalences dérivées de variétés algébriques


Authors: Mathieu Anel and Bertrand Toën
Journal: J. Algebraic Geom. 18 (2009), 257-277
DOI: https://doi.org/10.1090/S1056-3911-08-00487-6
Published electronically: October 14, 2008
MathSciNet review: 2475815
Full-text PDF

Abstract | References | Additional Information

Abstract: Soient $ S$ un schéma affine, $ X \longrightarrow S$ une famille miniverselle de schémas projectifs et lisses, et $ D$ une catégorie triangulée fixée. On démontre que les points $ s\in S$ tels que la catégorie dérivée de la fibre en $ s$, $ D_{coh}^{b}(X_{s})$, soit équivalente à $ D$, forment un ensemble au plus dénombrable. Nous déduisons de cela que l'ensemble des classes d'isomorphisme des variétés complexes lisses et projectives qui possèdent une catégorie dérivée fixée est au plus dénombrable. Notre démonstration passe par la construction d'un certain préchamp classifiant les dg-catégories saturées et connexes, ainsi qu'une application des périodes allant du champ des variétés lisses et projectives vers ce préchamp, et qui à une variété associe un dg-modèle pour sa catégorie dérivée.


References [Enhancements On Off] (What's this?)

  • [Bo-Or] A. Bondal, D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), 327-344. MR 1818984 (2001m:18014)
  • [Bo-VdB] A. Bondal, M. Van Den Bergh, Generators and representability of functors in commutative and non-commutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36. MR 1996800 (2004h:18009)
  • [Ge-Ke] C. Geiss, B. Keller, Infinitesimal deformations of derived categories, exposé à Oberwolfach, Février 2005.
  • [Ke] B. Keller, On differential graded categories, pré-publication arXiv math.KT/0601185. MR 2275593
  • [Ko-Sp] K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) $ \mathbf{67}$ (1958) 328-466. MR 0112154 (22:3009)
  • [L-M] G. Laumon, L. Moret-Bailly, Champs algébriques, A Series of Modern Surveys in Mathematics vol. $ \mathbf{39}$, Springer-Verlag 2000. MR 1771927 (2001f:14006)
  • [Or] D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math Sci. (New York) $ \mathbf{84}$, (1997), 1361-1381. MR 1465519 (99a:14054)
  • [Ro] R. Rouquier, Catégories dérivées et géométrie birationelle, Séminaire Bourbaki, March 2005, à parraitre dans Astérisque, accessible à http://www.maths.leeds.ac.uk/ ~rouquier/papers.html MR 2296422
  • [Tab] G. Tabuada, Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, Comptes Rendus de l'Acadie de Sciences de Paris $ \mathbf{340}$ (2005), 15-19. MR 2112034 (2005h:18033)
  • [To1] B. Toën, The homotopy of dg-categories and derived Morita theory, à parraitre dans Inventiones (pré-publication arXiv math.AG/0408337).
  • [To2] B. Toën, Finitude homotopique des dg-algèbres propres et lisses, pré-publication arXiv math.AT/0609762.
  • [To3] B. Toën, Higher and derived stacks: A global overview pré-publication arXiv math.AG/0604504.
  • [HAGII] B. Toën, G. Vezzosi, Homotopical algebraic geometry II: Geometric stacks and applications, pré-publication arXiv math.AG/0404373, à parraitre dans Mémoires of the AMS. MR 2061855 (2005f:14001)
  • [To-Va] B. Toën, M. Vaquié, Moduli of objects in dg-categories, pré-publication arXiv math.AG/0503269, à parraitre dans Annales de l'ENS.
  • [Ye] A. Yekutieli, The Continuous Hochschild Cochain Complex of a Scheme, Canadian J. Math. Vol. $ \mathbf{54}$ (6), (2002), 1319-1337. MR 1940241 (2004d:16016b)


Additional Information

Mathieu Anel
Affiliation: Department of Mathematics, Middlesex College, The University of Western Ontario, London, Ontario N6A 5B7, Canada
Address at time of publication: CIRGET, Université du Quebec à Montréal, Case Postale 8888, succursale Centre-ville, Montréal, QC H3C 3P8 Canada

Bertrand Toën
Affiliation: Laboratoire Emile Picard, UMR CNRS 5580, Université Paul Sabatier, Bat 1R2, Toulouse Cedex 09, France

DOI: https://doi.org/10.1090/S1056-3911-08-00487-6
Received by editor(s): December 15, 2006
Received by editor(s) in revised form: July 2, 2007
Published electronically: October 14, 2008

American Mathematical Society