Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Equisingularity of sections, $ (t^{r})$ condition, and the integral closure of modules

Authors: Terence Gaffney, David Trotman and Leslie Wilson
Journal: J. Algebraic Geom. 18 (2009), 651-689
Published electronically: December 2, 2008
MathSciNet review: 2524594
Full-text PDF

Abstract | References | Additional Information

Abstract: This paper uses the theory of integral closure of modules to study the sections of both real and complex analytic spaces. The stratification conditions, which play a key role, are the $ (t^{r})$ conditions introduced by Thom and Trotman. Our results include an algebraic formulation of the $ (t^{r})$ in terms of the integral closure of modules, and a new simple proof showing how the $ (t^{r})$ conditions improve under Grassmann modification. In the complex analytic case, we characterise $ (t^{r})$ in terms of the genericity of the multiplicity of a certain submodule of the Jacobian module, then use the principle of specialisation of integral dependence for modules to give an equimultiplicity criterion for $ (t^{r})$. As a consequence we obtain numerical criteria for Verdier equisingularity of families of plane sections in various situations.

References [Enhancements On Off] (What's this?)

  • [BMM] J. Briançon, P. Maisonobe and M. Merle, Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom, Inv. Math. 117 (1994), 531-50. MR 1283729 (95h:32043)
  • [B-T] H. Brodersen and D. Trotman, Whitney (b)-regularity is strictly weaker than Kuo's ratio test for real algebraic stratifications, Math. Scand. 45 (1979), 27-34. MR 567430 (81i:58008)
  • [B] G.W. Brumfiel, Real valuation rings and ideals, Géométrie algébrique réelle et formes quadratiques, Rennes 1981, Springer Lecture Notes 959 (1982), 55-97. MR 683129 (84g:14022)
  • [B-R] D. Buchsbaum and D. S. Rim, A generalized Koszul complex II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1968), 197-224. MR 0159860 (28:3076)
  • [C] G. Comte, Equisingularité réelle : nombres de Lelong et images polaires, Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), 757-788. MR 1832990 (2002d:32040)
  • [G1] T. Gaffney, Integral closure of modules and Whitney equisingularity, Inv. Math. 107 (1992), 301-322. MR 1144426 (93d:32055)
  • [G2] T. Gaffney, Multiplicities and equisingularity of ICIS germs, Inv. Math. 123 (1996), 209-220. MR 1374196 (97b:32051)
  • [G3] T. Gaffney, Aureoles and integral closure of modules, in Stratifications, singularities and differential equations (Marseille 1990, Honolulu 1990), Travaux en Cours, Hermann, Paris 55 (1997), 55-62. MR 1473241 (99a:32053)
  • [G4] T. Gaffney, Equisingularity of plane sections, $ t\sb 1$ condition and the integral closure of modules, Real and complex singularities (Sao Carlos, 1994), Pitman Res. Notes Math. Ser., Longman, Harlow, 333 (1995), 95-111. MR 1478514 (99a:32052)
  • [G5] T. Gaffney, Nilpotents, Integral Closure and Equisingularity conditions, ``Real and complex singularities'', M. Saia and J. Seade, Eds., Contemp. Math., 459, Amer. Math. Soc., Providence, RI, 2008.
  • [G-K] T. Gaffney and S. Kleiman, Specialization of integral dependence for modules, Inv. Math. 137 (1999), 541-574. MR 1709870 (2000k:32025)
  • [GWPL] C. G. Gibson, K. Wirthmuller, A.A. du Plessis and E.J.N. Looijenga, Topological stability of smooth maps, Springer Lecture Notes 552 (1976). MR 0436203 (55:9151)
  • [H-L] J.-P. Henry and D.T. Lê, Limites d'espaces tangents, Fonctions de plusieurs variables complexes II, Sém. Norguet 1974-75, Springer Lecture Notes 482 (1975), 55-62. MR 0377095 (51:13269)
  • [H-M1] J.-P. Henry and M. Merle, Limites de normales, conditions de Whitney et éclatement d'Hironaka, Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 40 (1983), 575-584. MR 713094 (85i:32018)
  • [H-M2] J.-P. Henry and M. Merle, Conormal space and Jacobian modules. A short dictionary, Singularities (Lille, 1991), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge 201 (1994), 147-174. MR 1295075 (95j:32048)
  • [K-Th] S. Kleiman and A. Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, Journal of Algebra 167 (1994), 168-231. MR 1282823 (96a:14007)
  • [Ku-Tr] T.-C. Kuo and D. Trotman, On (w) and ($ t\sp{s}$)-regular stratifications, Inv. Math. 92 (1988), 633-643. MR 939478 (89h:58014)
  • [K-T-L] T.-C. Kuo, D. Trotman and P.-X. Li, Blowing-up and Whitney $ (a)$-regularity, Canadian Math. Bull. 32 (1989), 482-485. MR 1019416 (91b:58008)
  • [L] D.T. Lê, Calculation of Milnor number of an isolated singularity of a complete intersection, Funk. Anal. i Ego Pril. 8 (1974), 45-49. MR 0350064 (50:2557)
  • [L-S] D. T. Lê and K. Saito, La constance du nombre de Milnor donne des bonnes stratifications, C.R. Acad. Sci. 277 (1973), 793-795. MR 0350063 (50:2556)
  • [L-T] D.T. Lê, B. Teissier, Limites d'espaces tangents en géométrie analytique, Comm. Math. Helv. 63 (1988), 540-578. MR 966949 (89m:32025)
  • [O-W] D. O'Shea and L. Wilson, Limits of tangent spaces to real surfaces, Amer. J. of Math. 126 (2004), 951-980. MR 2089078 (2005f:14110)
  • [R] D. Rees, Reduction of modules, Math. Proc. Camb. Phil. Soc. 101 (1987), 431-449. MR 878892 (88a:13001)
  • [T1] B. Teissier, Cycles évanescents, sections planes, et conditions de Whitney, in Singularités à Cargèse, Astérisque 7-8 (1973), 285-362. MR 0374482 (51:10682)
  • [T2] B. Teissier, Résolution simultanée et cycles évanescents, in Séminaire sur les singularités des surfaces, Proceedings 1976-77, M. Demazure, H. Pinkham, B. Teissier (eds.), Springer Lect. Notes 777 (1980), 82-146.
  • [T3] B. Teissier, Variétés polaires II: Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic Geometry, Proc., La Rabida 1981, Springer Lect. Notes 961 (1982), 314-491. MR 708342 (85i:32019)
  • [Th] R. Thom, Local topological properties of differentiable mappings, Bombay Colloquium, Oxford Univ. Press (1964), 191-202. MR 0195102 (33:3307)
  • [Tr1] D. Trotman, A transversality property weaker than Whitney (a)-regularity, Bull. London Math. Soc. 8 (1976), 225-228. MR 0423402 (54:11381)
  • [Tr2] D. Trotman, Whitney Stratifications: Faults and Detectors, Warwick University, Thesis (1977).
  • [Tr3] D. Trotman, Comparing regularity conditions on stratifications, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 40 (1983), 575-586. MR 713282 (84j:58021)
  • [Tr4] D. Trotman, Transverse transversals and homeomorphic transversals, Topology 24 (1985), 25-39. MR 790673 (87a:58017)
  • [T-W] D. Trotman and L. Wilson, Stratifications and finite determinacy, Proc. London Math. Soc. (3) 78 (1999), 334-368. MR 1665246 (2000h:58069)
  • [Va1] G. Valette, Détermination et stabilité du type métrique des singularités, University of Provence, thesis (2003).
  • [Va2] G. Valette, Volume, Whitney conditions and Lelong number, Ann. Polon. Math. 93 (2008), 1-16. MR 2383338
  • [V] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312. MR 0481096 (58:1242)
  • [W] L. Wilson, Stratifications and sufficiency of jets, in Singularity theory, Trieste 1991 (eds. D. T. Lê, K. Saito and B. Teissier), World Scientific, Singapore (1995), 953-973. MR 1378437 (96m:58024)

Additional Information

Terence Gaffney
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Address at time of publication: Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720-5070

David Trotman
Affiliation: LATP (UMR 6632), Centre de Mathématique et Informatique, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille, France

Leslie Wilson
Affiliation: Department of Mathematics, University of Hawaii at Manoa, 2565 The Mall, 96822 Honolulu, Hawaii

Received by editor(s): April 30, 2007
Received by editor(s) in revised form: July 2, 2007
Published electronically: December 2, 2008
Additional Notes: The first author was supported in part by NSF Grant #9803691. The first and third authors were supported in part by the University of Provence (Aix-Marseille 1). The second author was supported in part by the European Real Algebraic and Analytic Geometry project, and by the University of Hawaii.

American Mathematical Society