Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Stable modification of relative curves


Author: Michael Temkin
Journal: J. Algebraic Geom. 19 (2010), 603-677
DOI: https://doi.org/10.1090/S1056-3911-2010-00560-7
Published electronically: June 9, 2010
MathSciNet review: 2669727
Full-text PDF

Abstract | References | Additional Information

Abstract: We generalize theorems of Deligne-Mumford and de Jong on semi-stable modifications of families of proper curves. The main result states that after a generically étale alteration of the base any (not necessarily proper) family of multipointed curves with semi-stable generic fiber admits a minimal semi-stable modification. The latter can also be characterized by the property that its geometric fibers have no certain exceptional components. The main step of our proof is uniformization of one-dimensional extensions of valued fields. Riemann-Zariski spaces are then used to obtain the result over any integral base.


References [Enhancements On Off] (What's this?)

  • [AdJ] Abramovich, D.; de Jong, A.J.: Smoothness, semistability, and toroidal geometry, J. Alg. Geom. 6 (1997), no. 4, 789-801. MR 1487237 (99b:14016)
  • [AK] Abramovich, D.; Karu, K.: Weak semistable reduction in characteristic 0, Inv. Math. 139 (2000), 241-273. MR 1738451 (2001f:14021)
  • [AO] Abramovich, D.; Oort, F.: Alterations and resolution of singularities, Resolution of singularities (Obergurgl, 1997), 39-108, Progr. Math., 181, Birkhauser, Basel, 2000. MR 1748617 (2001h:14009)
  • [AW] Artin, M.; Winters, G.: Degenerate fibres and stable reduction of curves, Topology 10 (1971), 373-383. MR 0476756 (57:16313)
  • [Ber1] Berkovich, V.: Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990. MR 1070709 (91k:32038)
  • [Ber2] Berkovich, V.: Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHES 78 (1993), 5-161. MR 1259429 (95c:14017)
  • [Ber3] Berkovich, V.: Smooth $ p$-adic analytic spaces are locally contractible, Inv. Math. 137 (1999), 1-84. MR 1702143 (2000i:14028)
  • [BGR] Bosch, S.; Güntzer, U.; Remmert, R.: Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Springer, Berlin-Heidelberg-New York, 1984. MR 746961 (86b:32031)
  • [BL1] Bosch, S.; Lütkebohmert, W.: Stable reduction and uniformization of abelian varieties. I., Math. Ann. 270 (1985), no. 3, 349-379. MR 774362 (86j:14040a)
  • [BL2] Bosch, S.; Lütkebohmert, W.: Formal and rigid geometry. II. Flattening techniques., Math. Ann. 296 (1993), no. 3, 403-429. MR 1225983 (94e:11070)
  • [BLR] Bosch, S.; Lütkebohmert, W.; Raynaud, M.: Formal and rigid geometry. IV. The reduced fibre theorem., Inv. Math. 119 (1995), no. 2, 361-398. MR 1312505 (97e:11075)
  • [Bou] Bourbaki, N.: Algèbre commutative, Hermann, Paris, 1961.
  • [Con1] Conrad, B.: Deligne's notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), no. 3, 205-257. MR 2356346 (2009d:14002)
  • [Con2] Conrad, B.: Grothendieck duality and base change. Lecture Notes in Mathematics, 1750. Springer-Verlag, Berlin, 2000. vi+296 pp. MR 1804902 (2002d:14025)
  • [Del] Deligne, P.: Le lemme de Gabber, Asterisque 127 (1985), 131-150. MR 801921
  • [DM] Deligne, P.; Mumford, D.: The irreducibility of the space of curves of given genus, IHES Publ. Math. 36 (1969), 75-109. MR 0262240 (41:6850)
  • [Duc] Ducros, A: Toute forme modérément ramiée d'un polydisque ouvert est triviale, preprint.
  • [dJ] de Jong, A.J.: Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599-621. MR 1450427 (98f:14019)
  • [EGA] Dieudonné, J.; Grothendieck, A.: Éléments de géométrie algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, (1960-7).
  • [EGA I] Dieudonné, J.; Grothendieck, A.: Éléments de géométrie algébrique, I: Le langage des schemas, second edition, Springer, Berlin, 1971.
  • [Epp] Epp, H.: Eliminating wild ramification, Inv. Math. 19 (1973), 235-249. MR 0321929 (48:294)
  • [FK] Fujiwara, K; Kato, F.: Rigid geometry and applications, Moduli spaces and arithmetic geometry, 327-386, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006. MR 2310255 (2008h:14020)
  • [Gi] Gieseker, D.: Lectures on moduli of curves, Published for the Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1982. MR 691308 (84h:14035)
  • [GR] Gabber, O.; Ramero, L.: Almost ring theory, Lecture Notes in Mathematics, 1800. Springer-Verlag, Berlin, 2003, vi+307 pp. MR 2004652 (2004k:13027)
  • [Har] Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp. MR 0463157 (57:3116)
  • [Hub] Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, Vol. 30, Vieweg, 1996. MR 1734903 (2001c:14046)
  • [KKMS] Kempf, G.; Knudsen, F.; Mumford, D.; Saint-Donat, B.: Toroidal embeddings, Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin-New York, 1973. viii+209 pp. MR 0335518 (49:299)
  • [Kuh1] Kuhlmann, F.-V.: Elimination of Ramification I: The Generalized Stability Theorem, to appear in Trans. Amer. Math. Soc.
  • [Kuh2] Kuhlmann, F.-V.: Elimination of Ramification II: Henselian Rationality of Valued Function Fields, in preparation.
  • [Lip] Lipman, J.: Desingularization of two-dimensional schemes, Ann. Math. 107 (1978), no. 1, 151-207. MR 0491722 (58:10924)
  • [Mat] Matsumura, H.: Commutative ring theory, Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989. MR 1011461 (90i:13001)
  • [Put] van der Put, M.: Stable reductions of algebraic curves, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 4, 461-478. MR 770734 (86a:14023)
  • [RG] Raynaud, M.; Gruson, L.: Critères de platitude et de projectivité, Inv. Math. 13 (1971), 1-89. MR 0308104 (46:7219)
  • [Sa] Saito, T.: Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), no. 6, 1043-1085. MR 919003 (88h:14036)
  • [Tem1] Temkin, M.: On local properties of non-Archimedean analytic spaces., Math. Ann. 318 (2000), no. 3, 585-607. MR 1800770 (2001m:14037)
  • [Tem2] Temkin, M.: On local properties of non-Archimedean analytic spaces II, Isr. J. of Math. 140 (2004), 1-27. MR 2054837 (2005c:14030)
  • [Tem3] Temkin, M.: Relative Riemann-Zariski spaces, preprint, arXiv:[0804.2843], to appear in Isr. J. of Math.
  • [Tem4] Temkin, M.: Inseparable local uniformization, preprint, arXiv:[0804.1554].
  • [TT] Thomason, R.; Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, 247-436, Progress in Mathematics, vol. 88, Birkhauser, Boston, 1990. MR 1106918 (92f:19001)
  • [Zar] Zariski, O.: Local uniformization on algebraic varieties, Ann. of Math., 41 (1940), 852-896. MR 0002864 (2:124a)


Additional Information

Michael Temkin
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Address at time of publication: Institute of Mathematics, Hebrew University, Giv$’$at-Ram, 91904 Jerusalem, Israel
Email: temkin@math.ias.edu, temkin@math.huji.ac.il

DOI: https://doi.org/10.1090/S1056-3911-2010-00560-7
Received by editor(s): July 26, 2007
Received by editor(s) in revised form: February 24, 2010
Published electronically: June 9, 2010
Additional Notes: This article is based on a portion of my Ph.D. thesis; I want to thank my advisor Professor V. Berkovich. I am absolutely indebted to B. Conrad and I owe a lot to A. Ducros for pointing out various mistakes and inaccuracies, and for many suggestions that led to two revisions of the paper that improved the exposition. I express my deep gratitude to the Israel Clore Foundation for supporting my doctoral studies and to the Max Planck Institute for Mathematics, where a portion of this paper was written. A final revision was made when the author was staying at the IAS; the author was supported by NFS grant DMS-0635607.

American Mathematical Society