Stringy Hodge numbers of strictly canonical nondegenerate singularities

Author:
Jan Schepers

Journal:
J. Algebraic Geom. **21** (2012), 273-297

Published electronically:
March 28, 2011

MathSciNet review:
2877435

Full-text PDF

Abstract | References | Additional Information

Abstract: We describe a class of isolated nondegenerate hypersurface singularities that give a polynomial contribution to Batyrev's stringy -function. These singularities are obtained by imposing a natural condition on the facets of the Newton polyhedron, and they are strictly canonical. We prove that Batyrev's conjecture concerning the nonnegativity of stringy Hodge numbers is true for complete varieties with such singularities, under some additional hypotheses on the defining polynomials (e.g. convenient or weighted homogeneous). The proof uses combinatorics on lattice polytopes. The results form a strong generalisation of previously obtained results for Brieskorn singularities.

**[Ba1]**Victor V. Batyrev,*Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties*, J. Algebraic Geom.**3**(1994), no. 3, 493–535. MR**1269718****[Ba2]**Victor V. Batyrev,*Stringy Hodge numbers of varieties with Gorenstein canonical singularities*, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1–32. MR**1672108****[BB]**Victor V. Batyrev and Lev A. Borisov,*Mirror duality and string-theoretic Hodge numbers*, Invent. Math.**126**(1996), no. 1, 183–203. MR**1408560**, 10.1007/s002220050093**[BN]**Victor Batyrev and Benjamin Nill,*Combinatorial aspects of mirror symmetry*, Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, Contemp. Math., vol. 452, Amer. Math. Soc., Providence, RI, 2008, pp. 35–66. MR**2405763**, 10.1090/conm/452/08770**[BM]**Lev A. Borisov and Anvar R. Mavlyutov,*String cohomology of Calabi-Yau hypersurfaces via mirror symmetry*, Adv. Math.**180**(2003), no. 1, 355–390. MR**2019228**, 10.1016/S0001-8708(03)00007-0**[BMP]**Tom Braden and Robert MacPherson,*Intersection homology of toric varieties and a conjecture of Kalai*, Comment. Math. Helv.**74**(1999), no. 3, 442–455. MR**1710686**, 10.1007/s000140050098**[BI]**W. Bruns and B. Ichim,*Normaliz 2.0*, available on http://www.mathematik. uni-osnabrueck.de/normaliz/.**[DH]**Jan Denef and Kathleen Hoornaert,*Newton polyhedra and Igusa’s local zeta function*, J. Number Theory**89**(2001), no. 1, 31–64. MR**1838703**, 10.1006/jnth.2000.2606**[MP]**Mircea Mustaţǎ and Sam Payne,*Ehrhart polynomials and stringy Betti numbers*, Math. Ann.**333**(2005), no. 4, 787–795. MR**2195143**, 10.1007/s00208-005-0691-x**[Re1]**Miles Reid,*Canonical 3-folds*, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR**605348****[Re2]**Miles Reid,*Young person’s guide to canonical singularities*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR**927963****[Sch]**Jan Schepers,*On the hard Lefschetz property of stringy Hodge numbers*, J. Algebra**321**(2009), no. 2, 394–403. MR**2483273**, 10.1016/j.jalgebra.2008.10.010**[SV1]**Jan Schepers and Willem Veys,*Stringy Hodge numbers for a class of isolated singularities and for threefolds*, Int. Math. Res. Not. IMRN**2**(2007), Art. ID rnm016, 14. MR**2361454**, 10.1093/imrn/rnm016**[SV2]**Jan Schepers and Willem Veys,*Stringy 𝐸-functions of hypersurfaces and of Brieskorn singularities*, Adv. Geom.**9**(2009), no. 2, 199–217. MR**2523840**, 10.1515/ADVGEOM.2009.013**[St1]**Richard Stanley,*Generalized 𝐻-vectors, intersection cohomology of toric varieties, and related results*, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 187–213. MR**951205****[St2]**Richard P. Stanley,*Subdivisions and local ℎ-vectors*, J. Amer. Math. Soc.**5**(1992), no. 4, 805–851. MR**1157293**, 10.1090/S0894-0347-1992-1157293-9**[St3]**Richard P. Stanley,*Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR**1442260****[Ste]**D. A. Stepanov,*Combinatorial structure of exceptional sets in resolutions of singularities*, arXiv:math/0611903v1 [math.AG].**[Va]**A. N. Varchenko,*Zeta-function of monodromy and Newton’s diagram*, Invent. Math.**37**(1976), no. 3, 253–262. MR**0424806****[Ya]**Takehiko Yasuda,*Twisted jets, motivic measures and orbifold cohomology*, Compos. Math.**140**(2004), no. 2, 396–422. MR**2027195**, 10.1112/S0010437X03000368

Additional Information

**Jan Schepers**

Affiliation:
K.U.Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium

Email:
janschepers1@gmail.com

DOI:
https://doi.org/10.1090/S1056-3911-2011-00546-8

Received by editor(s):
April 30, 2009

Received by editor(s) in revised form:
August 28, 2009

Published electronically:
March 28, 2011

Additional Notes:
Supported by VICI grant 639.033.402 from the Netherlands Organisation for Scientific Research (NWO). During the completion of this paper, the author was a Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Part of this work was carried out during a stay at the Institut des Hautes Études Scientifiques (IHÉS). I am very grateful that I was given the opportunity to work there.

Dedicated:
Dedicated to Joost van Hamel