Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

$ K$-theory of cones of smooth varieties


Authors: G. Cortiñas, C. Haesemeyer, M. E. Walker and C. Weibel
Journal: J. Algebraic Geom. 22 (2013), 13-34
DOI: https://doi.org/10.1090/S1056-3911-2011-00583-3
Published electronically: December 27, 2011
MathSciNet review: 2993045
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ R$ be the homogeneous coordinate ring of a smooth projective variety $ X$ over a field $ k$ of characteristic 0. We calculate the $ K$-theory of $ R$ in terms of the geometry of the projective embedding of $ X$. In particular, if $ X$ is a curve, then we calculate $ K_0(R)$ and $ K_1(R)$, and prove that $ K_{-1}(R)=\bigoplus H^1(C,\mathcal {O}(n))$. The formula for $ K_0(R)$ involves the Zariski cohomology of twisted Kähler differentials on the variety.


References [Enhancements On Off] (What's this?)

  • 1. G. Cortiñas, C. Haesemeyer, M. Schlichting and C. Weibel,
    Cyclic homology, $ cdh$-cohomology and negative $ K$-theory,
    Annals of Math. 167 (2008), 549-563. MR 2415380 (2009c:19006)
  • 2. G. Cortiñas, C. Haesemeyer and C. Weibel,
    $ K$-regularity, $ cdh$-fibrant Hochschild homology, and a conjecture of Vorst,
    J. AMS 21 (2008), 547-561. MR 2373359 (2008k:19002)
  • 3. G. Cortiñas, C. Haesemeyer and C. Weibel,
    Infinitesimal cohomology and the Chern character to negative cyclic homology,
    Math. Ann. 344 (2009), 891-922, published electronically DOI: 10.1007/s00208-009-0333-9. MR 2507630 (2010i:19006)
  • 4. G. Cortiñas, C. Haesemeyer, M. Walker and C. Weibel,
    Bass' $ NK$ groups and $ cdh$-fibrant Hochschild homology,
    Invent. Math. 181 (2010), 421-448. Available at http://
    www.math.uiuc.edu/K-theory/#1/. MR 2657430
  • 5. R. Hartshorne,
    Algebraic Geometry,
    Springer Verlag, 1977. MR 0463157 (57:3116)
  • 6. S. Geller, L. Reid and C. Weibel, Cyclic homology and $ K$-theory of curves, J. reine angew. Math. 393 (1989), 39-90. MR 972360 (89m:14006)
  • 7. S. Iitaka.
    Algebraic geometry, volume 76 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1982.
    An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24. MR 637060 (84j:14001)
  • 8. C. Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), 195-216. MR 883882 (88k:18019)
  • 9. N. Katz and T. Oda,
    On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8-2 (1968), 199-213. MR 0237510 (38:5792)
  • 10. A. Krishna and V. Srinivas,
    Zero-cycles and $ K$-theory on normal surfaces, Annals Math. 156 (2002), 155-195. MR 1935844 (2003k:14005)
  • 11. A. Krishna and V. Srinivas,
    in preparation.
  • 12. M. Krusemeyer, Fundamental groups, algebraic $ K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15-47. MR 0335522 (49:303)
  • 13. J. Lewis and S. Saito, Algebraic cycles and Mumford-Griffiths invariants, Amer. J. Math. 129 (2007), 1449-1499. MR 2369886 (2008j:14014)
  • 14. R. Michler, Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, Astérisque 226 (1994), 321-333. MR 1317123 (96a:19003)
  • 15. M. P. Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Annals of Math. 89 (1969), 242-253. MR 0241434 (39:2774)
  • 16. C. Soulé,
    Opérations en $ K$-théorie algébrique, Canad. J. Math. 37 (1985), 488-550. MR 787114 (87b:18013)
  • 17. V. Srinivas,
    Vector bundles on the cone over a curve,
    Compositio Math. 47 (1982), 249-269. MR 681609 (84e:14017)
  • 18. V. Srinivas,
    Grothendieck groups of polynomial and Laurent polynomial rings,
    Duke Math. J. 53 (1986), 595-633. MR 860663 (88a:14018)
  • 19. V. Srinivas,
    $ K_1$ of the cone over a curve,
    J. reine angew. Math. 381 (1987), 37-50. MR 918839 (89e:14008)
  • 20. R. G. Swan,
    On Seminormality, J. Algebra 67 (1980), 210-229. MR 595029 (82d:13006)
  • 21. C. Weibel,
    $ K_2$, $ K_3$ and nilpotent ideals, J. Pure Appl. Alg. 18 (1980), 333-345. MR 593622 (82i:18016)
  • 22. C. Weibel,
    Mayer-Vietoris sequences and module structures on $ NK_*$ , pp. 466-493 in Lecture Notes in Math., volume 854, Springer-Verlag, 1981. MR 618317 (82k:18010)
  • 23. C. Weibel,
    Homotopy Algebraic $ K$-theory, pp. 461-488 in AMS Contemp. Math. 83, AMS, 1989. MR 991991 (90d:18006)
  • 24. C. Weibel,
    An introduction to homological algebra,
    Cambridge Univ. Press, 1994. MR 1269324 (95f:18001)
  • 25. C. Weibel,
    The negative $ K$-theory of normal surfaces.
    Duke Math. J. 108 (2001), 1-35. MR 1831819 (2002b:14012)
  • 26. O. Zariski and P. Samuel.
    Commutative algebra. Vol. II.
    The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249 (22:11006)


Additional Information

G. Cortiñas
Affiliation: Departamento Matemática, FCEyN-UBA, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina
Email: gcorti@dm.uba.ar

C. Haesemeyer
Affiliation: Department of Mathematics, UCLA, Los Angeles, California 90095
Email: chh@math.ucla.edu

M. E. Walker
Affiliation: Department of Mathematics, University of Nebraska–Lincoln, Lincoln, Nebraska 68588
Email: mwalker5@math.unl.edu

C. Weibel
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901
Email: weibel@math.rutgers.edu

DOI: https://doi.org/10.1090/S1056-3911-2011-00583-3
Received by editor(s): March 2, 2010
Received by editor(s) in revised form: November 23, 2010
Published electronically: December 27, 2011
Additional Notes: The first author’s research was supported by CONICET and partially supported by grants PICT 2006-00836, UBACyT-X051, and MTM2007-64704.
The second and third authors were partially supported by NSF grants
The fourth author was supported by NSA and NSF grants

American Mathematical Society