Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension

Authors: Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun and Thomas Peternell
Journal: J. Algebraic Geom. 22 (2013), 201-248
Published electronically: May 31, 2012
MathSciNet review: 3019449
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that a holomorphic line bundle on a projective manifold is pseudo-effective if and only if its degree on any member of a covering family of curves is non-negative. This is a consequence of a duality statement between the cone of pseudo-effective divisors and the cone of ``movable curves'', which is obtained from a general theory of movable intersections and approximate Zariski decomposition for closed positive $ (1,1)$-currents. As a corollary, a projective manifold has a pseudo-effective canonical bundle if and only if it is not uniruled. We also prove that a 4-fold with a canonical bundle which is pseudo-effective and of numerical class zero in restriction to curves of a good covering family, has non-negative Kodaira dimension.

References [Enhancements On Off] (What's this?)

  • [Am04] Ambro, F., Nef dimension of minimal models. Math. Ann. 330 (2004), 309-324. MR 2089428 (2005h:14036)
  • [BFJ09] Boucksom, S., Favre, C., Jonsson, M., Differentiability of volumes of divisors and a problem of Teissier, J. Alg. Geom. 18 (2009), 279-308. MR 2475816 (2009m:14005)
  • [Bou02a] Boucksom, S., On the volume of a big line bundle, Intern. J. Math. 13 (2002), 1043-1063. MR 1945706 (2003j:32025)
  • [Bou02b] Boucksom, S.: Cônes positifs des variétés complexes compactes, Thesis, Grenoble 2002.
  • [Br06] Brunella, M., A positivity property for foliations on compact Kähler manifolds, Intern. J. Math. 17 (2006), 35-43. MR 2204838 (2006k:32044)
  • [Ca81] Campana, F., Coréduction algébrique d'un espace analytique faiblement kählérien compact, Inv. Math. 63 (1981), 187-223. MR 610537 (84e:32028)
  • [Ca94] Campana, F., Remarques sur le revêtement universel des variétés kählériennes compactes. Bull. Soc. Math.France. 122 (1994), 255-284. MR 1273904 (95f:32036)
  • [Ca04] Campana, F., Orbifolds, special varieties and classification theory: appendix. Ann. Inst. Fourier 54 (2004), 631-665. MR 2097417 (2006c:14014)
  • [CP91] Campana, F., Peternell, Th., Algebraicity of the ample cone of projective varieties. J. f. reine u. angew. Math. 407 (1991), 160-166. MR 1048532 (91c:14012)
  • [CP01] Campana, F., Peternell, Th., The Kodaira dimension of Kummer threefolds. Bull. Soc. Math. France 129, 357-359 (2001). MR 1881200 (2003b:32022)
  • [CP09] Campana, F., Peternell, Th., Geometric stability of the cotangent bundle and the universal cover of a projective manifold. Bull. Soc. Math. France 139 (2011), 41-74. MR 1881200 (2003b:32022)
  • [CT86] Colliot-Thélène, J. L., Arithmétique des variétés rationnelles et problèmes birationnels, Proc. Intl.Cong. Math. 1986, 641-653. MR 934267 (89d:11051)
  • [Deb06] Debarre, O., Classes de cohomologie positives dans les variétés kählériennes compactes, Séminaire Bourbaki. Vol. 2004/2005, Astérisque No. 307 (2006), 199-228. MR 2296419 (2009a:32026)
  • [Dem85] Demailly, J.-P., Champs magnétiques et inégalités de Morse pour la $ d''$-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-229. MR 812325 (87d:58147)
  • [Dem90] Demailly, J.-P., Singular Hermitian metrics on positive line bundles, Proceedings of the Bayreuth conference ``Complex algebraic varieties'', April 2-6, 1990, edited by K. Hulek, T. Peternell, M. Schneider, F. Schreyer, Lecture Notes in Math. $ {\rm n}^\circ \,$1507, Springer-Verlag, 1992, 87-104. MR 1178721 (93g:32044)
  • [Dem92] Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Alg. Geom. 1 (1992), 361-409. MR 1158622 (93e:32015)
  • [Dem01] Demailly, J.-P., Vanishing theorems and effective results in algebraic geometry, School on algebraic Geometry held at ICTP in January 2000, Abdus Salam Int. Cent.Theoret. Phys., Trieste, 2001.
  • [Dem07] Demailly, J.-P., Kähler manifolds and transcendental techniques in algebraic geometry, International Congress of Mathematicians, Vol. I, 153-186, Eur. Math. Soc., Zürich, 2007. MR 2334190 (2008k:32057)
  • [Dem10] Demailly, J.-P., Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, arXiv:1003.5067, math.CV, to appear in Proceedings of the Riemann International School of Mathematics, Advances in Number Theory and Geometry, held at Verbania (Italy), April 2009.
  • [DEL00] Demailly, J.P., Ein, L., Lazarsfeld, R., A subadditivity property of multiplier ideals. Michigan Math. J.48 (2000), 137-156. MR 1786484 (2002a:14016)
  • [DPa04] Demailly, J.P., Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Annals of Math.159 (2004), 1247-1274. MR 2113021 (2005i:32020)
  • [DPS94] Demailly, J.-P., Peternell, Th., Schneider, M. Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom. 3 (1994), 295-345. MR 1257325 (95f:32037)
  • [DPS96] Demailly, J.-P., Peternell, Th., Schneider, M., Holomorphic line bundles with partially vanishing cohomology, Israel Math. Conf. Proc. vol. 9 (1996), 165-198. MR 1360502 (96k:14016)
  • [DPS01] Demailly, J.-P., Peternell, Th., Schneider, M., Pseudo-effective line bundles on compact Kähler manifolds, Intern. J. Math. 6 (2001), 689-741. MR 1875649 (2003a:32032)
  • [Ec02] Eckl, T., Tsuji's numerical trivial fibrations, J. Algebraic Geom. 13 (2004), 617-639. MR 2072764 (2005f:14014)
  • [Fuj94] Fujita, T., Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1-3. MR 1262949 (95c:14053)
  • [GHS03] Graber, T., Harris, J., Starr, J., Families of rationally connected varieties, Journal AMS 16 (2003), 57-67. MR 1937199 (2003m:14081)
  • [Ha70] Hartshorne, R., Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York 1970 xiv+256 pp. MR 0282977 (44:211)
  • [HM07] Hacon, C., Mckernan, J., On Shokurov's rational connectedness conjecture, Duke Math. J. 138 (2007), 119-136. MR 2309156 (2008f:14030)
  • [Huy98] Huybrechts, D., Birational symplectic manifolds and their deformations. J. Differential Geom. 45 (1997), 488-513.MR 1472886 (98e:32031)
  • [KMM87] Kawamata, Y., Matsuki, K., Matsuda, K., Introduction to the minimal model program, Adv. Stud. Pure Math. 10 (1987), 283-360.
  • [KM92] Kollár, J., Mori, S., Classification of three-dimensional flips, Journal AMS 5 (1992), 533-703. MR 1149195 (93i:14015)
  • [Ko86] Kollár, J., Higher direct images of dualizing sheaves, II, Ann. Math. 124 (1986), 171-202. MR 847955 (87k:14014)
  • [Ko87] Kobayashi, S., Differential geometry of complex vector bundles, Princeton Univ. Press, 1987. MR 909698 (89e:53100)
  • [Ko92] Kollaŕ, J., et al., Flips and abundance for algebraic $ 3$-folds, Astérisque 211, Soc. Math. France, 1992.
  • [La00] Lazarsfeld, R., Ampleness modulo the branch locus of the bundle associated to a branched covering, Comm. Alg. 28 (2000), 5598-5599.
  • [La04] Lazarsfeld, R., Positivity in algebraic geometry, I and II, A series of Modern Surveys in Mathematics, Vol. 48 and 49, Springer, 2004. MR 2095471 (2005k:14001a)
  • [Mi87] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety, Adv. Stud. Pure Math. 10, 449-476 (1987). MR 946247 (89k:14022)
  • [Mi88a] Miyaoka, Y., On the Kodaira dimension of minimal threefolds, Math. Ann. 281, 325-332 (1988). MR 949837 (89g:14028)
  • [Mi88b] Miyaoka, Y., Abundance conjecture for 3-folds: case $ \nu = 1$, Comp. Math. 68, 203-220 (1988). MR 966580 (89m:14023)
  • [MM86] Miyaoka, Y., Mori, S., A numerical criteria for uniruledness, Ann. Math. 124 (1986), 65-69. MR 847952 (87k:14046)
  • [Mo87] Mori, S., Classification of higher dimensional varieties, Proc. Symp. Pure Math. 46, 269-331 (1987). MR 927961 (89a:14040)
  • [Mo88] Mori, S., Flip theorem and existence of minimal models of $ 3$-folds, J. Amer. Math. Soc. 1 (1988), 177-353. MR 924704 (89a:14048)
  • [Na87] Nakayama, N., On Weierstrass models, Alg. Geom. and Comm. Algebra. Vol. in honour of Nagata, vol. 2, Kinokuniya, Tokyo, 1988, 405-431. MR 977771 (90m:14030)
  • [Na04] Nakayama, N., Zariski-decomposition and abundance, MSJ Memoirs 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208 (2005h:14015)
  • [Pa98] Paun, M., Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (1998), 411-421. MR 1612321 (99c:32042)
  • [Pe01] Peternell, Th., Towards a Mori theory on compact Kähler $ 3$-folds, III, Bull. Soc.Math. France 129, 339-356 (2001). MR 1881199 (2003b:32024)
  • [Pe06] Peternell, Th., Kodaira dimension of subvarieties II, Intern. J. Math. 17 (2006), 619-631. MR 2229475 (2007b:14034)
  • [PSS99] Peternell, Th., Schneider, M., Sommese, A.J., Kodaira dimension of subvarieties, Intl. J. Math. 10 (1999), 1065-1079. MR 1739364 (2001e:14016)
  • [PS02] Peternell, Th., Sommese, A.J., Ample vector bundles and branched coverings II. The Fano Conference, 625-645, Univ. Torino, Turin, 2004. MR 2112595 (2005k:14088)
  • [SB92] Shepherd-Barron, N., Miyaoka's theorems on the generic semi-negativity of $ T_X$, Astérisque 211 (1992), 103-114.
  • [TS00] Tsuji, H., Numerically trivial fibrations., math.AG/0001023 (2000).
  • [workshop] Workshop: Bauer, T. et al., A reduction map for nef line bundles, Complex Geometry, vol. in honour of H. Grauert, Springer (2002), 27-36. MR 1922095 (2003h:14023)
  • [Yau78] Yau, S.-T., On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339-411. MR 480350 (81d:53045)

Additional Information

Sébastien Boucksom
Affiliation: Université de Paris VII, Institut de Mathématiques, 175 rue du Chevaleret, 75013 Paris, France

Jean-Pierre Demailly
Affiliation: Université de Grenoble I, Institut Fourier, UMR 5582 du CNRS, BP 74, 100 rue des maths, 38402 Saint-Martin d’Hères, France

Mihai Păun
Affiliation: Université de Strasbourg, Département de Mathématiques, 67084 Strasbourg, France
Address at time of publication: Université Henri Poincaré - Nancy I, Institut Élie Cartan, BP 239, F-54506 Vandœuvre lès Nancy, France

Thomas Peternell
Affiliation: Universität Bayreuth, Mathematisches Institut, D-95440 Bayreuth, Deutschland

Received by editor(s): April 29, 2010
Received by editor(s) in revised form: July 15, 2010
Published electronically: May 31, 2012
Additional Notes: The original version of the present paper was forwarded to arXiv (in May 2004), and has been revised several times since then. It had also been submitted to a journal in 2004, but then the submission was cancelled after the referee expressed concerns about certain parts of the paper, as they were written at that time. Although the results of sections 1-5 have been reproduced several times, e.g. in lecture notes of the second-named author or in Rob Lazarsfeld’s book \cite{La04}, a complete version never appeared in a refereed journal. We thank the Journal of Algebraic Geometry for suggesting to repair this omission.

American Mathematical Society