Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Conformal blocks and rational normal curves

Author: Noah Giansiracusa
Journal: J. Algebraic Geom. 22 (2013), 773-793
Published electronically: June 18, 2013
MathSciNet review: 3084722
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that the Chow quotient parameterizing configurations of $ n$ points in $ \mathbb{P}^d$ which generically lie on a rational normal curve is isomorphic to $ \overline {\mathcal {M}}_{0,n}$, generalizing the well-known $ d=1$ result of Kapranov. In particular, $ \overline {\mathcal {M}}_{0,n}$ admits birational morphisms to all the corresponding geometric invariant theory (GIT) quotients. For symmetric linearizations, the polarization on each GIT quotient pulls back to a divisor that spans the same extremal ray in the symmetric nef cone of $ \overline {\mathcal {M}}_{0,n}$ as a conformal blocks line bundle. A symmetry in conformal blocks implies a duality of point-configurations that comes from Gale duality and generalizes a result of Goppa in algebraic coding theory. In a suitable sense, $ \overline {\mathcal {M}}_{0,2m}$ is fixed pointwise by the Gale transform when $ d=m-1$ so stable curves correspond to self-associated configurations.

References [Enhancements On Off] (What's this?)

  • [AS08] Alexeev, V. and Swinarski, D. ``Nef divisors on $ \overline {\mathcal {M}}_{0,n}$.'' Geometry and arithmetic, 1-21, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012. MR 2987650
  • [AGSS10] Arap, M., Gibney, A., Stankewicz, J., and Swinarski, D. `` $ \mathfrak{sl}_n$ level 1 conformal blocks divisors on $ \overline {\mathcal {M}}_{0,n}$.'' Int. Math. Res. Not. IMRN, 2012, no. 7, 1634-1680. MR 2913186
  • [AL02] Avritzer, D. and Lange, H. ``The moduli space of hyperelliptic curves and binary forms.'' Math. Z. 242 no. 4 (2002), 615-632. MR 1981190 (2004c:14051)
  • [Bea96] Beauville, A. ``Conformal Blocks, Fusion Rules, and the Verlinde formula.'' Israel Math. Conf. Proc. Bar-Ilan Univ., Ramat Gan, 9 (1996), 75-96. MR 1360497 (97f:17025)
  • [BL94] Beauville, A., and Laszlo, Y. ``Conformal Blocks and Generalized Theta Functions.'' Commun. Math. Phys. 164 (1994), 385-419. MR 1289330 (95k:14011)
  • [Bol10] Bolognesi, M. ``Forgetful linear systems on the projective space and rational normal curves over $ M_{0,2n}^{GIT}$''. Bull. Lond. Math. Soc. 43 (2011), no. 3, 583-596. MR 2820147 (2012m:14049)
  • [DM86] Deligne, P. and Mostow, G. ``Monodromy of hypergeometric functions and non-lattice integral monodromy.'' Publications of IHES 63 (1986), 5-90. MR 849651 (88a:22023a)
  • [DH98] Dolgachev, I. and Hu, Y. ``Variation of geometric invariant theory quotients.'' Inst. Hautes Études Sci. Publ. Math., no. 87 (1998), 5-56. MR 1659282 (2000b:14060)
  • [DO88] Dolgachev, I. and Ortland, D. ``Points sets in projective spaces and theta functions.'' Asterisque 165 (1988), 1-210. MR 1007155 (90i:14009)
  • [EP00] Eisenbud, D. and Popescu, S. ``The projective geometry of the Gale transform.'' J. Algebra 230 no. 1 (2000), 127-173. MR 1774761 (2001g:14083)
  • [Fak11] Fakhruddin, N. ``Chern Classes of Conformal Blocks.'' Compact moduli spaces and vector bundles, 145-176, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012. MR 2894632
  • [Fla98] Flamini, F. ``Towards an inductive construction of self-associated sets of points.'' Le Matematiche LIII (1998), 33-41. MR 1696016 (2000m:14055)
  • [GM82] Gelfand, I. and R. MacPherson. ``Geometry in Grassmannians and a generalization of the dilogarithm.'' Adv. in Math. 44 (1982), 279-312. MR 658730 (84b:57014)
  • [GHP88] Gerritzen, L., Herrlich, F., and van der Put, M. ``Stable $ n$-pointed trees of projective lines.'' Indag. Math. 50 (1988), 131-163. MR 952512 (89i:14005)
  • [GG11] Giansiracusa, N. and Gillam, W.D. ``On Kapranov's description of $ \overline {\mathcal {M}}_{0,n}$ as a Chow quotient.'' math.AG/1103.4661
  • [GS09] Giansiracusa, N. and Simpson, M. ``Conic Compactifications of $ \overline {\mathcal {M}}_{0,n}$.'' Int. Math. Res. Notices Vol. 2010, doi:10.1093/imrn/rnq228 (2010).
  • [EGA60] Grothendieck, A. and Dieudonné, J. Éléments de géométrie algébrique. Pub. Math. IHES, 1960.
  • [Har77] Hartshorne, R. Algebraic Geometry. Springer-Verlag GTM 52, 1977. MR 0463157 (57:3116)
  • [Has03] Hassett, B. ``Moduli spaces of weighted pointed stable curves.'' Adv. Math. 173 no. 2 (2003), 316-352. MR 1957831 (2004b:14040)
  • [HMSV10] Howard, B., Millson, J., Snowden, A. and Vakil, R. ``The ideal of relations for the ring of invariants of n points on the line.'' J. Eur. Math. Soc. 14 (2012), no. 1, 1-60. MR 2862033 (2012m:13007)
  • [Hu99] Hu, Y. ``Moduli spaces of stable polygons and symplectic structures on $ \overline {\mathcal {M}}_{0,n}$.'' Compos. Math. 118 (1999), 159-187. MR 1713309 (2000g:14018)
  • [Hu05a] Hu, Y. ``Topological Aspects of Chow Quotients.'' J. Differential Geometry 69 (2005), 399-440. MR 2170276 (2006f:14054)
  • [Hu05b] Hu, Y. ``Stable configurations of linear subspaces and quotient coherent sheaves.'' Q. J. Pure Appl. Math. 1 (2005), 127-164. MR 2154335 (2007c:14048)
  • [KM96a] Kapovich, M. and J. Millson. ``The symplectic geometry of polygons in Euclidean space.'' J. Differential Geom. 44 no. 3 (1996), 479-513. MR 1431002 (98a:58027)
  • [KM96b] Keel, S. and J. McKernan. ``Contractible extremal rays on $ \overline {\mathcal {M}}_{0,n}$.'' math.AG/
  • [Kap93] Kapranov, M. ``Chow quotients of Grassmannians, I.'' Adv. Sov. Math. 16 no. 2 (1993), 29-110. MR 1237834 (95g:14053)
  • [Kol96] Kollár, J. Rational curves on algebraic varieties. Springer, Secaucus, NJ, 1996. MR 1440180 (98c:14001)
  • [Loo95] Looijenga, E. ``Conformal blocks revisited.'' math.AG/0507086.
  • [GIT94] Mumford, D., Fogarty, J. and F. Kirwan. Geometric Invariant Theory. Third Edition. Springer, 1994. MR 1304906 (95m:14012)
  • [Pol95] Polito, M. `` $ \text {SL}(2,\mathbb{C})$-quotients de $ (\mathbb{P}^1)^n$.'' C.R. Acad. Sci Paris 321 Série I (1995), 1577-1582. MR 1367810 (97a:14049)
  • [Sim08] Simpson, M. ``On Log Canonical Models of the Moduli Space of Stable Pointed Genus Zero Curves.'' Ph.D dissertation, Rice University, 2008. MR 2711642
  • [TUY89] Tsuchiya, A., Ueno, K., and Y. Yamada. ``Conformal field theory on universal family of stable curves with gauge symmetries.'' Adv. Stud. Pure Math. 19 (1989), 459-566. MR 1048605 (92a:81191)

Additional Information

Noah Giansiracusa
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Address at time of publication: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720

Received by editor(s): January 16, 2011
Received by editor(s) in revised form: April 11, 2011
Published electronically: June 18, 2013
Additional Notes: The author was partially supported by funds from NSF DMS-0901278.
Communicated by: Michel Brion
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society