Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



A homology plane of general type can have at most a cyclic quotient singularity

Authors: R. V. Gurjar, M. Koras, M. Miyanishi and P. Russell
Journal: J. Algebraic Geom. 23 (2014), 1-62
Published electronically: May 29, 2013
MathSciNet review: 3121847
Full-text PDF

Abstract | References | Additional Information

Abstract: We show that a homology plane of general type has at worst a single cyclic quotient singular point. An example of such a surface with a singular point does exist. We also show that the automorphism group of a smooth contractible surface of general type is cyclic.

References [Enhancements On Off] (What's this?)

  • [B] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Inventiones math. 4 (1968), 336-358. MR 0222084 (36:5136)
  • [Br] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York and London, 1972. MR 0413144 (54:1265)
  • [F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982), 503-566. MR 687591 (84g:14035)
  • [GKMR] R.V. Gurjar, M. Koras, M. Miyanishi, P. Russell, Affine Mumford theorem and related problems, Vol. 353, Math. Annalen. (2012), pp. 127-144.
  • [Gi] B. Giesecke, Simpliziale Zerlegung abz$ \ddot {a}$hlbarer analytische R$ \ddot {a}$ume, Math. Zeit., 83 (1964), 177-213. MR 0159346 (28:2563)
  • [GM] R.V. Gurjar and M. Miyanishi, Affine lines on logarithmic $ \mathbb{Q}$-homology planes, Math. Ann. 294 (1992), 463-482. MR 1188132 (94g:14018)
  • [GM2] R.V. Gurjar and M. Miyanishi, On the Jacobian Conjecture for $ \mathbb{Q}$-homology planes, J. reine angew Math. 516 (1999), 115-132. MR 1724617 (2001b:14094)
  • [GPS] R.V. Gurjar, C.R. Pradeep, A.R. Shastri, On the rationality of $ \mathbb{Q}$-homology planes II, Osaka J. Math., 34 (1997), no. 3, 725-743. MR 1613057 (99i:14038)
  • [GP] R.V. Gurjar, C.R. Pradeep, $ \mathbb{Q}$-homology planes are rational -III, Osaka J. Math., 36 (1999), no. 2, 259-335. MR 1736480 (2000m:14070)
  • [GS] R.V. Gurjar and A.R. Shastri, On the rationality of complex homology $ 2$-cells I, J. Math. Soc. Japan 41 (1989), 37-56. MR 972163 (89k:14035)
  • [Ko] R. Kobayashi, Uniformization of complex surfaces. Kahler metric and moduli spaces, 313-394, Adv. Stud. Pure Math., 18-II, Academic Press, Boston, MA, 1990. MR 1145252 (93g:32042)
  • [KP] M. Koras, K. Palka, Singular $ \mathbb{Q}$-homology planes of negative Kodaira dimension have smooth locus of non-general type, preprint 2009, arXiv:1001.2256.
  • [KR] M. Koras, P. Russell, Contractible affine surfaces with a quotient singularity, Transformation Groups, 12 (2007), no. 2, 293-340. MR 2323685 (2008m:14008)
  • [KPR] H.P. Kraft, T. Petrie and J.D. Randall, Quotient varieties. Adv. Math. 74 (1989), no. 2, 145-162. MR 997095 (90b:14057)
  • [L] A. Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 2003, no. 2, 358-396. MR 1971155 (2004c:14069)
  • [Mi] M. Miyanishi, Open algebraic surfaces, CRM Monograph Series, 12. American Mathematical Society, Providence, RI, 2001. viii+259 pp. MR 1800276 (2002e:14101)
  • [MS] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), no. 3, 755-788. MR 1127098 (92g:14034)
  • [MT] M. Miyanishi and S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ. 32 (1992), no. 3, 443-450. MR 1183360 (93k:14048)
  • [N] M.V. Nori, Zariski's conjecture and related problems. Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), no. 2, 305-344. MR 732347 (86d:14027)
  • [Ne] W. Neumann, On the topology of curves in complex surfaces, Topological Methods in Algebraic Transformation Groups, Proceedings of a conference at Rutgers University, Progress in Mathematics, 1989. MR 1040860 (91b:14016)
  • [P] H. Pinkham, Normal surface singularities with $ \mathbb{C}^*$-action, Math. Ann. 227 (1977), 183-193. MR 0432636 (55:5623)
  • [S] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 517-546. MR 0590938 (58:28702)

Additional Information

R. V. Gurjar
Affiliation: School of Mathematics, Tata Institute for Fundamental Research, 400005 Homi Bhabha Road, Mumbai, India

M. Koras
Affiliation: Institute of Mathematics, Warsaw University, ul. Banacha 2, Warsaw, Poland

M. Miyanishi
Affiliation: Research Center for Mathematical Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan

P. Russell
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Canada

Received by editor(s): November 26, 2010
Received by editor(s) in revised form: April 10, 2011, April 12, 2011, and April 14, 2011
Published electronically: May 29, 2013
Additional Notes: The first author was supported by the RIP-program at Mathematisches Forschungsinstitut Oberwolfach. The second author was supported by Polish Grant MNiSW. The third author was supported by Grant-in-Aid for Scietific Research (c), JSPS. The fourth author was supported by NSERC, Canada.
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society