Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Twisted Kodaira-Spencer classes and the geometry of surfaces of general type


Authors: Daniel Naie and Igor Reider
Journal: J. Algebraic Geom. 23 (2014), 165-200
DOI: https://doi.org/10.1090/S1056-3911-2013-00609-8
Published electronically: August 6, 2013
MathSciNet review: 3121851
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the cohomology groups $ H^1(X,\Theta _X(-mK_X))$, for $ m\geq 1$, where $ X$ is a smooth minimal complex surface of general type, $ \Theta _X$ its holomorphic tangent bundle, and $ K_X$ its canonical divisor. One of the main results is a precise vanishing criterion for $ H^1(X,\Theta _X (-K_X))$ (Theorem 1.1).

The proof is based on the geometric interpretation of non-zero cohomology classes of $ H^1(X,\Theta _X (-K_X))$. This interpretation in turn uses higher rank vector bundles on $ X$.

We apply our methods to the long standing conjecture saying that the irregularity of surfaces in $ \mathbb{P}^4$ is at most $ 2$. We show that if $ X$ has bounded holomorphic Euler characteristic, no irrational pencil, and is embedded in $ \mathbb{P}^4$ with a sufficiently large degree, then the irregularity of $ X$ is at most $ 3$.


References [Enhancements On Off] (What's this?)

  • [1] Edoardo Ballico and Luca Chiantini, On smooth subcanonical varieties of codimension $ 2$ in $ {\bf P}^{n},$ $ n\geq 4$, Ann. Mat. Pura Appl. (4) 135 (1983), 99-117 (1984). MR 750529 (86d:14047), https://doi.org/10.1007/BF01781064
  • [2] Arnaud Beauville, Surfaces algébriques complexes, Société Mathématique de France, Paris, 1978 (French). Avec une sommaire en anglais; Astérisque, No. 54. MR 0485887 (58 #5686)
  • [3] F. A. Bogomolov, Unstable vector bundles and curves on surfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 517-524. MR 562649 (81k:14013)
  • [4] Olivier Debarre, Théorèmes de connexité et variétés abéliennes, Amer. J. Math. 117 (1995), no. 3, 787-805 (French). MR 1333945 (96j:14009), https://doi.org/10.2307/2375089
  • [5] Wolfram Decker and Frank-Olaf Schreyer, Non-general type surfaces in $ {\bf P}^4$: some remarks on bounds and constructions, J. Symbolic Comput. 29 (2000), no. 4-5, 545-582. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769655 (2002a:14064), https://doi.org/10.1006/jsco.1999.0323
  • [6] Geir Ellingsrud and Christian Peskine, Sur les surfaces lisses de $ {\bf P}_4$, Invent. Math. 95 (1989), no. 1, 1-11 (French). MR 969410 (89j:14023), https://doi.org/10.1007/BF01394141
  • [7] Laurent Gruson and Christian Peskine, Genre des courbes de l'espace projectif, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 31-59 (French). MR 527229 (81e:14019)
  • [8] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [9] G. Horrocks and D. Mumford, A rank $ 2$ vector bundle on $ {\bf P}^{4}$ with $ 15,000$symmetries, Topology 12 (1973), 63-81. MR 0382279 (52 #3164)
  • [10] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328-466. MR 0112154 (22 #3009)
  • [11] Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898. MR 0186672 (32 #4130)
  • [12] Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), no. 2, 159-171. MR 744605 (85j:14060), https://doi.org/10.1007/BF01456083
  • [13] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser Boston, Mass., 1980. MR 561910 (81b:14001)
  • [14] Igor Reider, Geography and the number of moduli of surfaces of general type, Asian J. Math. 9 (2005), no. 3, 407-448. MR 2215200 (2007c:14036)
  • [15] Leonard Roth, On the Projective Classification of Surfaces, Proc. London Math. Soc. S2-42, no. 1, 142. MR 1577025, https://doi.org/10.1112/plms/s2-42.1.142


Additional Information

Daniel Naie
Affiliation: Université d’Angers, Département de Mathématiques, 49045 Angers, France
Email: daniel.naie@univ-angers.fr

Igor Reider
Affiliation: Université d’Angers, Departement de Mathematique, 2, Bd. Lavoisier, 49045 Angers, France
Email: igor.reider@univ-angers.fr

DOI: https://doi.org/10.1090/S1056-3911-2013-00609-8
Received by editor(s): February 8, 2011
Received by editor(s) in revised form: July 21, 2011
Published electronically: August 6, 2013
Dedicated: Dedicated to Fedor Bogomolov on his 65th birthday
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society