Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Erratum to ``The homogeneous coordinate ring of a toric variety''


Author: David A. Cox
Journal: J. Algebraic Geom. 23 (2014), 393-398
DOI: https://doi.org/10.1090/S1056-3911-2013-00651-7
Published electronically: December 3, 2013
MathSciNet review: 3166395
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and $ K$-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009. MR 2508056 (2010d:19001)
  • [2] David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17-50. MR 1299003 (95i:14046)
  • [3] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (2012g:14094)
  • [4] Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507-588 (French). MR 0284446 (44 #1672)
  • [5] Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494 (2001i:14059), https://doi.org/10.1307/mmj/1030132722
  • [6] Mohan S. Putcha, Linear algebraic monoids, London Mathematical Society Lecture Note Series, vol. 133, Cambridge University Press, Cambridge, 1988. MR 964690 (90a:20003)


Additional Information

David A. Cox
Affiliation: Department of Mathematics, Amherst College, Amherst, Massachusetts 01002
Email: dac@math.amherst.edu

DOI: https://doi.org/10.1090/S1056-3911-2013-00651-7
Published electronically: December 3, 2013
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society