Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Log canonical models and variation of GIT for genus $ 4$ canonical curves


Authors: Sebastian Casalaina-Martin, David Jensen and Radu Laza
Journal: J. Algebraic Geom. 23 (2014), 727-764
DOI: https://doi.org/10.1090/S1056-3911-2014-00636-6
Published electronically: March 3, 2014
MathSciNet review: 3263667
Full-text PDF

Abstract | References | Additional Information

Abstract: We discuss geometric invariant theory (GIT) for canonically embedded genus $ 4$ curves and the connection to the Hassett-Keel program. A canonical genus $ 4$ curve is a complete intersection of a quadric and a cubic, and, in contrast to the genus $ 3$ case, there is a family of GIT quotients that depend on a choice of linearization. We discuss the corresponding variation of GIT (VGIT) problem and show that the resulting spaces give the final steps in the Hassett-Keel program for genus $ 4$ curves.


References [Enhancements On Off] (What's this?)

  • [AFS10] J. Alper, M. Fedorchuk, and D. I. Smyth,
    Singularities with $ \mathbb{G}_m$-action and the log minimal model program for $ \overline {M}_g$.
    arXiv:1010.3751v1, 2010.
  • [AFS12] Jarod Alper, Maksym Fedorchuk, and David Ishii Smyth, Finite Hilbert stability of (bi)canonical curves, Invent. Math. 191 (2013), no. 3, 671-718. MR 3020172, https://doi.org/10.1007/s00222-012-0403-6
  • [AH12] Jarod Alper and Donghoon Hyeon, GIT constructions of log canonical models of $ \overline {\mathcal {M}}_g$, Compact moduli spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 87-106. MR 2895185 (2012m:14048), https://doi.org/10.1090/conm/564/11152
  • [All03] Daniel Allcock, The moduli space of cubic threefolds, J. Algebraic Geom. 12 (2003), no. 2, 201-223. MR 1949641 (2003k:14043), https://doi.org/10.1090/S1056-3911-02-00313-2
  • [AM99] D. Avritzer and R. Miranda, Stability of pencils of quadrics in $ {\bf P}^4$, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 2, 281-300. MR 1738422 (2000j:14014)
  • [BE95] Dave Bayer and David Eisenbud, Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. 347 (1995), no. 3, 719-756. MR 1273472 (95g:14032), https://doi.org/10.2307/2154871
  • [Ben11] O. Benoist,
    Quelques espaces de modules d'intersections complètes lisses qui sont quasi-projectifs,
    to appear in J. Eur. Math. Soc. (arxiv:1111.1589v2), 2011.
  • [CMJL12] Sebastian Casalaina-Martin, David Jensen, and Radu Laza, The geometry of the ball quotient model of the moduli space of genus four curves, Compact moduli spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 107-136. MR 2895186, https://doi.org/10.1090/conm/564/11153
  • [Fed12] M. Fedorchuk,
    The final log canonical model of the moduli space of stable curves of genus four,
    Int. Math. Res. Not., 2012.
    doi:10.1093/imrn/rnr242.
  • [FS10] M. Fedorchuk and D. I. Smyth,
    Alternate compactifications of moduli spaces of curves,
    to appear in "Handbook of Moduli" (arXiv:1012.0329v1), 2010.
  • [Gie82] D. Gieseker, Lectures on moduli of curves, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 69, Published for the Tata Institute of Fundamental Research, Bombay, 1982. MR 691308 (84h:14035)
  • [Has05] Brendan Hassett, Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 169-192. MR 2166084 (2006g:14047), https://doi.org/10.1007/0-8176-4417-2_8
  • [HH08] B. Hassett and D. Hyeon,
    Log minimal model program for the moduli space of curves: The first flip,
    to appear in Ann. of Math. (arXiv:0806.3444v1), 2008.
  • [HH09] Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471-4489. MR 2500894 (2009m:14039), https://doi.org/10.1090/S0002-9947-09-04819-3
  • [HHL10] Brendan Hassett, Donghoon Hyeon, and Yongnam Lee, Stability computation via Gröbner basis, J. Korean Math. Soc. 47 (2010), no. 1, 41-62. MR 2591024 (2011f:14004), https://doi.org/10.4134/JKMS.2010.47.1.041
  • [HK00] Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494 (2001i:14059), https://doi.org/10.1307/mmj/1030132722
  • [HL10a] D. Hyeon and Y. Lee,
    Birational contraction of genus two tails in the moduli space of genus four curves I,
    arXiv:1003.3973, 2010.
  • [HL10b] Donghoon Hyeon and Yongnam Lee, Log minimal model program for the moduli space of stable curves of genus three, Math. Res. Lett. 17 (2010), no. 4, 625-636. MR 2661168 (2011g:14066)
  • [HM98] Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825 (99g:14031)
  • [Kir09] Frances Kirwan, Quotients by non-reductive algebraic group actions, Moduli spaces and vector bundles, London Math. Soc. Lecture Note Ser., vol. 359, Cambridge Univ. Press, Cambridge, 2009, pp. 311-366. MR 2537073 (2011a:14092)
  • [KM76] Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on ``det'' and ``Div'', Math. Scand. 39 (1976), no. 1, 19-55. MR 0437541 (55 #10465)
  • [Laz09] Radu Laza, The moduli space of cubic fourfolds, J. Algebraic Geom. 18 (2009), no. 3, 511-545. MR 2496456 (2010c:14039), https://doi.org/10.1090/S1056-3911-08-00506-7
  • [Laz11] R. Laza,
    GIT and moduli with a twist,
    Handbook of Moduli, Vol. 2, Adv. Lect. Math., International Press, 259-207, 2014. arXiv:1111.3032.
  • [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • [MM93] Toshiki Mabuchi and Shigeru Mukai, Stability and Einstein-Kähler metric of a quartic del Pezzo surface, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 133-160. MR 1215285 (94m:32043)
  • [Mum77] David Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110. MR 0450272 (56 #8568)
  • [RV02] Jacqueline Rojas and Israel Vainsencher, Canonical curves in $ \mathbb{P}^3$, Proc. London Math. Soc. (3) 85 (2002), no. 2, 333-366. MR 1912054 (2003j:14004), https://doi.org/10.1112/S0024611502013503
  • [Sch91] David Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), no. 3, 297-313. MR 1106299 (92d:14018)
  • [Sha80] Jayant Shah, A complete moduli space for $ K3$ surfaces of degree $ 2$, Ann. of Math. (2) 112 (1980), no. 3, 485-510. MR 595204 (82j:14030), https://doi.org/10.2307/1971089


Additional Information

Sebastian Casalaina-Martin
Affiliation: University of Colorado, Department of Mathematics, Boulder, Colorado
Email: casa@math.colorado.edu

David Jensen
Affiliation: Stony Brook University, Department of Mathematics, Stony Brook, New York
Email: djensen@math.sunysb.edu

Radu Laza
Affiliation: Stony Brook University, Department of Mathematics, Stony Brook, New York
Email: rlaza@math.sunysb.edu

DOI: https://doi.org/10.1090/S1056-3911-2014-00636-6
Received by editor(s): March 22, 2012
Received by editor(s) in revised form: August 6, 2012, November 5, 2012, and November 16, 2012
Published electronically: March 3, 2014
Additional Notes: The first author was partially supported by NSF grant DMS-1101333
The third author was partially supported by NSF grant DMS-0968968 and a Sloan Fellowship
Article copyright: © Copyright 2014

American Mathematical Society