Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Chow-Künneth decomposition for $ 3$- and $ 4$-folds fibred by varieties with trivial Chow group of zero-cycles


Author: Charles Vial
Journal: J. Algebraic Geom. 24 (2015), 51-80
DOI: https://doi.org/10.1090/S1056-3911-2014-00616-0
Published electronically: January 27, 2014
MathSciNet review: 3275654
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ k$ be a field, and let $ \Omega $ be a universal domain over $ k$. Let $ f:X \rightarrow S$ be a dominant morphism defined over $ k$ from a smooth projective variety $ X$ to a smooth projective variety $ S$ of dimension $ \leq 2$ such that the general fibre of $ f_\Omega $ has trivial Chow group of zero-cycles. For example, $ X$ could be the total space of a two-dimensional family of varieties whose general member is rationally connected. Suppose that $ X$ has dimension $ \leq 4$. Then we prove that $ X$ has a self-dual Murre decomposition, i.e., that $ X$ has a self-dual Chow-Künneth decomposition which satisfies Murre's conjectures (B) and (D). Moreover, we prove that the motivic Lefschetz conjecture holds for $ X$ and hence so does the Lefschetz standard conjecture. We also give new examples of $ 3$-folds of general type which are Kimura finite dimensional, new examples of $ 4$-folds of general type having a self-dual Murre decomposition, as well as new examples of varieties with finite degree three unramified cohomology.


References [Enhancements On Off] (What's this?)

  • [1] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235-x-1253. MR 714776 (85i:14002), https://doi.org/10.2307/2374341
  • [2] J.-L. Colliot-Thélène and B. Kahn, Cycles de codimension $ 2$ et $ H^3$ non ramifié pour les variétés sur les corps finis, preprint, arXiv:1104.3350v2.
  • [3] Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Christophe Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), no. 3, 763-801 (French). MR 714830 (85d:14010), https://doi.org/10.1215/S0012-7094-83-05038-X
  • [4] Pedro Luis del Angel and Stefan Müller-Stach, Motives of uniruled $ 3$-folds, Compositio Math. 112 (1998), no. 1, 1-16. MR 1622755 (99c:14004), https://doi.org/10.1023/A:1000333002671
  • [5] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • [6] Sergey Gorchinskiy and Vladimir Guletskiĭ, Motives and representability of algebraic cycles on threefolds over a field, J. Algebraic Geom. 21 (2012), no. 2, 347-373. MR 2877438, https://doi.org/10.1090/S1056-3911-2011-00548-1
  • [7] Sergey Gorchinskiy,
    Letter to the author,
    February 10, 2012.
  • [8] B. Brent Gordon, Masaki Hanamura, and Jacob P. Murre, Absolute Chow-Künneth projectors for modular varieties, J. Reine Angew. Math. 580 (2005), 139-155. MR 2130589 (2006a:14006), https://doi.org/10.1515/crll.2005.2005.580.139
  • [9] V. Guletskiĭ and C. Pedrini, Finite-dimensional motives and the conjectures of Beilinson and Murre, $ K$-Theory 30 (2003), no. 3, 243-263. Special issue in honor of Hyman Bass on his seventieth birthday. Part III. MR 2064241 (2005f:14020), https://doi.org/10.1023/B:KTHE.0000019787.69435.89
  • [10] Uwe Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245-302. MR 1265533 (95c:14006)
  • [11] B. Kahn and R. Sujatha.
    Birational motives, I. Pure birational motives.
    Preprint, February 27, 2009. arXiv:0902.4902.
  • [12] Bruno Kahn, Jacob P. Murre, and Claudio Pedrini, On the transcendental part of the motive of a surface, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 143-202. MR 2187153 (2009c:14010)
  • [13] Shun-Ichi Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173-201. MR 2107443 (2005j:14007), https://doi.org/10.1007/s00208-004-0577-3
  • [14] Steven L. Kleiman, The standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3-20. MR 1265519 (95k:14010)
  • [15] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • [16] Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475-507 (Russian). MR 0258836 (41 #3482)
  • [17] Stefan Müller-Stach and Morihiko Saito, Relative Chow-Künneth decompositions for morphisms of threefolds, J. Reine Angew. Math. 666 (2012), 141-161. MR 2920884, https://doi.org/10.1515/CRELLE.2011.119
  • [18] J. P. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190-204. MR 1061525 (91g:14003), https://doi.org/10.1515/crll.1990.409.190
  • [19] J. P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety. I. The general conjectures and some examples, Indag. Math. (N.S.) 4 (1993), no. 2, 177-188. MR 1225267 (94j:14006a), https://doi.org/10.1016/0019-3577(93)90038-Z
  • [20] A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163-187. MR 1265529 (95b:11060)
  • [21] Charles Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups, Proc. Lond. Math. Soc. 106 (2013), no. 2, 1191-1195. MR 3021467
  • [22] Charles Vial, Projectors on the intermediate algebraic Jacobians, New York J. Math. 19 (2013), 793-822.
  • [23] Charles Vial, Pure motives with representable Chow groups, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1191-1195 (English, with English and French summaries). MR 2738925 (2012c:14010), https://doi.org/10.1016/j.crma.2010.10.017
  • [24] Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329-353. MR 715656 (85b:14041)
  • [25] Claire Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 473-492 (French). MR 1205880 (93m:14005)


Additional Information

Charles Vial
Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Email: c.vial@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/S1056-3911-2014-00616-0
Received by editor(s): September 29, 2011
Received by editor(s) in revised form: March 23, 2012
Published electronically: January 27, 2014
Additional Notes: This work was supported by a Nevile Research Fellowship at Magdalene College, Cambridge and an EPSRC Postdoctoral Fellowship under grant EP/H028870/1.
Article copyright: © Copyright 2014 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society