Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Inertial manifolds for reaction diffusion equations in higher space dimensions


Authors: John Mallet-Paret and George R. Sell
Journal: J. Amer. Math. Soc. 1 (1988), 805-866
MSC: Primary 58F12; Secondary 35K57, 47H20, 58D25
DOI: https://doi.org/10.1090/S0894-0347-1988-0943276-7
MathSciNet review: 943276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that the scalar reaction diffusion equation

$\displaystyle {u_t} = \nu \Delta u + f(x,u),\qquad u \in R$

with $ x \in {\Omega _n} \subset {R^n}\quad (n = 2,3)$ and with Dirichlet, Neumann, or periodic boundary conditions, has an inertial manifold when (1) the equation is dissipative, and (2) $ f$ is of class $ {C^3}$ and for $ {\Omega _3} = {(0,2\pi )^3}$ or $ {\Omega _2} = (0,2\pi /{a_1}) \times (0,2\pi /{a_2})$, where $ {a_1}$ and $ {a_2}$ are positive. The proof is based on an (abstract) Invariant Manifold Theorem for flows on a Hilbert space. It is significant that on $ {\Omega _3}$ the spectrum of the Laplacian $ \Delta $ does not have arbitrary large gaps, as required in other theories of inertial manifolds. Our proof is based on a crucial property of the Schroedinger operator $ \Delta + \upsilon (x)$, which is valid only in space dimension $ n \leq 3$. This property says that $ \Delta + \upsilon (x)$ can be well approximated by the constant coefficient problem $ \Delta + \bar \upsilon $ over large segments of the Hilbert space $ {L^2}(\Omega )$, where $ \bar \upsilon = {({\text{vol}}\Omega )^{ - 1}}\int_\Omega {\upsilon \;dx} $ is the average value of $ \upsilon $. We call this property the Principle of Spatial Averaging. The proof that the Schroedinger operator satisfies the Principle of Spatial Averaging on the regions $ {\Omega _2}$ and $ {\Omega _3}$ described above follows from a gap theorem for finite families of quadratic forms, which we present in an Appendix to this paper.

References [Enhancements On Off] (What's this?)

  • 1. Adams, R. A. (1975), Sobolev spaces, Academic Press, New York. MR 0450957 (56:9247)
  • 2. Billotti, J. E. and J. P. LaSalle (1971), Dissipative periodic processes, Bull. Amer. Math. Soc. 77, 1082-1088. MR 0284682 (44:1906)
  • 3. Constantin P. and C. Foias (1985), Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for $ 2D$ Navier-Stokes equation, Comm. Pure Appl. Math. 38, 1-27. MR 768102 (87g:35186)
  • 4. Constantin, P., C. Foias, B. Nicolaenko, and R. Temam (1986), Nouveaux résultats sur les varietés inertielles pour les équations différentielles dissipatives, C. R. Acad. Sci. Paris I 302, 375-378. MR 838393 (87j:35311)
  • 5. -, (1988), Integral manifolds and inertial manifolds for dissipative partial differential equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ.
  • 6. -, (1989), Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynamics and Differential Equations 1 (to appear). MR 1010960 (90i:35234)
  • 7. Constantin, P., C. Foias, and R. Temam (1985), Attractors representing turbulent flows, Mem. Amer. Math. Soc., no. 314, Amer. Math. Soc., Providence, RI. MR 776345 (86m:35137)
  • 8. Edmunds D. E. and W. D. Evans (1987), Spectral Theory and Differential Operators, Oxford Mathematical Monographs, Oxford, U.K. MR 929030 (89b:47001)
  • 9. Fenichel, N. (1971), Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21, 193-226. MR 0287106 (44:4313)
  • 10. Foias, C., O. Manley, and R. Temam (1986), Attractors for the Bernard problem: Existence and physical bounds of their fractal dimension (to appear). MR 903787 (89f:35166)
  • 11. Foias, C., B. Nicolaenko, G. R. Sell, and R. Temam (1985), Varietes inertielles pour l'equation de Kuramoto-Sivashinsky, C. R. Acad. Sci. Paris Sér. I Math. 301, 285-288. MR 803219 (87f:35214b)
  • 12. -, (1988), Inertial manifold for the Kuramoto Sivashinsky equation, J. Math. Pures Appl. (to appear).
  • 13. Foias, C., G. R. Sell, and R. Temam (1985), Varietes inertielles des equations differentielles dissipatives, C. R. Acad. Sci. Paris Sér. I Math. 301, 139-141. MR 801946 (87f:35214a)
  • 14. -, (1986), Inertial manifolds for nonlinear evolutionary equations, IMA Preprint No. 234, March 1986. Also in J. Differential Equations 73 (1988), 309-353. MR 943945 (89e:58020)
  • 15. Foias, C., G. R. Sell, and E. Titi (1988), Exponential tracking and approximation of inertial manifolds for dissipative equations, Inst. Appl. Math. Sci. Comp. Preprint, Indiana Univ.
  • 16. Foias, C. and R. Temam (1979), Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl. 58, 339-368. MR 544257 (81k:35130)
  • 17. Hale, J. K. (1988), Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, RI. MR 941371 (89g:58059)
  • 18. Hale, J. K., L. T. Magalhaes, and W. M. Oliva (1984), An introduction to infinite dimensional and dynamical systems--geometric theory, Appl. Math. Sciences, No. 47, Springer-Verlag, New York. MR 725501 (86h:34001)
  • 19. Hardy, G. H. and E. M. Wright (1979), An introduction to the theory of numbers, 5th ed., Oxford Press, Oxford. MR 568909 (81i:10002)
  • 20. Hartman, P. (1964), Ordinary differential equations, Wiley, New York. MR 0171038 (30:1270)
  • 21. Henry, D. (1981), Geometric theory of semilinear parabolic equations, Lecture Notes in Math., No. 840, Springer-Verlag, New York. MR 610244 (83j:35084)
  • 22. Hewitt, E. and K. Stromberg (1965), Real and abstract analysis, Graduate Texts in Math., No. 25, Springer-Verlag, New York. MR 0367121 (51:3363)
  • 23. Hirsch, M., C. Pugh, and M. Shub (1977), Invariant manifolds, Lecture Notes in Math., No. 583, Springer-Verlag, New York. MR 0501173 (58:18595)
  • 24. Kamaev, D. A. (1981), Hopf's conjecture for a class of chemical kinetics equations, J. Soviet Math. 25, 836-849.
  • 25. Mallet-Paret, J. (1976), Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22, 331-348. MR 0423399 (54:11378)
  • 26. Mallet-Paret, J. and G. R. Sell (1988), Counterexamples to the existence of inertial manifolds.
  • 27. Mañé, R. (1977), Reduction of semilinear parabolic equations to finite dimensional $ {C^1}$ flows, Geometry and Topology, Lecture Notes in Math., No. 597, Springer-Verlag, New York, 361-378. MR 0451309 (56:9596)
  • 28. -, (1981), On the dimension of the compact invariant sets of certain nonlinear maps, Lecture Notes in Math., No. 898, Springer-Verlag, New York, 230-242. MR 654892 (84k:58119)
  • 29. Mora, X. (1983), Finite dimensional attracting manifolds in reaction diffusion equations, Contemp. Math. 17, 353-360. MR 706109 (84g:58024)
  • 30. Mora, X. and J. Solà-Morales (1988), The singular limit dynamics of semilinear damped wave equations, Preprint, Univ. Autònoma Barcelona. MR 992148 (91a:35116b)
  • 31. Nicolaenko, B., B. Scheurer, and R. Temam (1985), Some global dynamical properties of the Kuramoto Sivashinsky equations: nonlinear stability and attractors, Physica D 16D, 155-183. MR 796268 (86k:35062)
  • 32. -, (1987), Some global dynamical properties of a class of pattern formation equations, IMA Preprint No. 381.
  • 33. Pazy, A. (1983), Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., Vol. 44, Springer-Verlag, New York. MR 710486 (85g:47061)
  • 34. Pliss, V. A. (1964), A reduction principle in the theory of the stability of motion, Izv. Akad. Nauk SSSR Mat. Ser. 28, 1297-1324. MR 0190449 (32:7861)
  • 35. Richards, I. (1982), On the gaps between numbers which are the sum of two squares, Adv. Math. 46, 1-2. MR 676985 (84d:10055)
  • 36. Sacker, R. J. (1969), A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech. 18, 705-762. MR 0239221 (39:578)
  • 37. Sacker, R. J. and G. R. Sell (1980), The spectrum of an invariant submanifold, J. Differential Equations 38, 135-160. MR 597797 (82h:58040)
  • 38. Temam, R. (1988), Infinite dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York. MR 953967 (89m:58056)
  • 39. Watson, G. L. (1960), Integral quadratic forms, Cambridge Press, Cambridge, England. MR 0118704 (22:9475)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 58F12, 35K57, 47H20, 58D25

Retrieve articles in all journals with MSC: 58F12, 35K57, 47H20, 58D25


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1988-0943276-7
Keywords: Averaging, gaps, inertial manifolds, invariant manifolds, quadratic forms, reaction diffusion equations, spatial averaging
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society