Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Affine Hecke algebras and their graded version


Author: George Lusztig
Journal: J. Amer. Math. Soc. 2 (1989), 599-635
MSC: Primary 16A64; Secondary 20H15, 22E50
DOI: https://doi.org/10.1090/S0894-0347-1989-0991016-9
MathSciNet review: 991016
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-215. MR 862716 (88d:11121)
  • [2] R. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra 51 (1978), 300-319. MR 487479 (81e:20047)
  • [3] G. Lusztig, Singularities, character formulas and a $ q$-analog of weight multiplicities, Astérisque 101-102 (1983), 208-229. MR 737932 (85m:17005)
  • [4] -, Some examples of square integrable representations of semisimple $ p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653. MR 694380 (84j:22023)
  • [5] -, Cuspidal local systems and graded Hecke algebras I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145-202. MR 972345 (90e:22029)
  • [6] I. G. Macdonald, Spherical functions on a group of $ p$-adic type, Publ. Ramanujan Inst., no. 2, Madras, 1971. MR 0435301 (55:8261)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 16A64, 20H15, 22E50

Retrieve articles in all journals with MSC: 16A64, 20H15, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1989-0991016-9
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society