On the envelope of holomorphy of a -sphere in

Authors:
Eric Bedford and Wilhelm Klingenberg

Journal:
J. Amer. Math. Soc. **4** (1991), 623-646

MSC:
Primary 32D10; Secondary 32E20

DOI:
https://doi.org/10.1090/S0894-0347-1991-1094437-0

MathSciNet review:
1094437

Full-text PDF

References | Similar Articles | Additional Information

**[Be]**E. Bedford,*Levi flat hypersurfaces in**with prescribed boundary: stability*, Ann. Scuola Norm. Sup. Pisa.**IX**(1982), 529-570. MR**693779 (85d:32029)****[BG]**E. Bedford and B. Gaveau,*Envelopes of holomorphy of certain**-spheres in*, Amer. J. Math.**105**(1983), 975-1009. MR**708370 (84k:32016)****[Bi1]**E. Bishop,*Differentiable manifolds in complex Euclidean space*, Duke Math. J.**32**(1965), 1-22. MR**0200476 (34:369)****[Bi2]**-,*Conditions for the analyticity of certain sets*, Michigan Math. J.**11**(1964), 289-304. MR**0168801 (29:6057)****[Br]**A. Browder,*Cohomology of maximal ideal spaces*, Bull. Amer. Math. Soc.**67**(1961), 515-516. MR**0130580 (24:A440)****[C]**E. Chirka,*Regularity of the boundaries of analytic sets*, Math. USSR Sbornik**45**(1983), 291-335. MR**648411 (83f:32009)****[DG]**A. Debiard and B. Gaveau,*Problème de Dirichlet pour l'équation de Lévi*, Bull. Sci. Math.**102**(1978), 369-386. MR**517769 (80f:32010)****[E1]**Y. Eliashberg,*Three lectures on symplectic topology in Cala Gonone*, preprint.**[E2]**-,*Filling by holomorphic discs and its applications*, Geometry of Low-Dimensional Manifolds, London Math. Soc. Lecture Notes, vol. 151.**[EH]**Y. Eliashberg and V. Harlamov,*On the number of complex points on a real surface inside a complex surface*, Proceedings of the International Topology Conference in Leningrad, 1982, 143-148.**[F1]**F. Forstneric,*Stability of analytic disks with boundaries in totally real submanifold of*, Ann. Inst. Fourier**37**(1987), 1-44. MR**894560 (88j:32019)****[F2]**-,*Polynomial hulls of sets fibered over the circle*, Indiana Univ. Math. J.**37**(1988), 869-889. MR**982834 (90g:32018)****[Fr1]**M. Freeman,*The polynomial hull of a thin two-manifold*, Pacific J. Math**38**(1971), 377-389. MR**0308442 (46:7556)****[Fr2]**-,*The uniform algebra generated by**and a smooth even function*, Math. Ann.**196**(1972), 269-274. MR**0310642 (46:9740)****[GG]**M. Golubitsky and V. Guillemin,*Stable mappings and their singularities*, Springer-Verlag New York, Heidelberg, and Berlin, 1973. MR**0341518 (49:6269)****[GW]**S. Greenfield and N. Wallach,*Extendibility properties of submanifolds of*, Proceedings of North Carolina Conference on Holomorphic Mappings and Minimal Surfaces, 1970. MR**0287026 (44:4233)****[G]**M. Gromov,*Pseudo holomorphic curves in symplectic manifolds*, Invent. Math.**82**(1985), 307-347.**[KW]**C. Kenig and S. Webster,*The local hull of holomorphy of a surface in the space of two complex variables*, Invent. Math.**67**(1982), 1-21. MR**664323 (84c:32014)****[K]**W. Klingenberg,*Asymptotic curves on real analytic surfaces in*, Math. Ann.**273**(1985), 149-162. MR**814201 (87f:32047)****[L]**H. Lewy,*The nature of the domain governed by different regimes*, Atti del Convegno Internazionale Metodi valutativi nella fisicamatematica, Accad. Naz. Lincei, 1975, 181-188.**[La]**H. F. Lai,*Real submanifolds of codimension two in complex manifolds*, Trans. Amer. Math. Soc.**264**(1981), 331-352. MR**603767 (82c:53023)****[Mi]**J. Milnor,*Singular points of complex hypersurfaces*, Princeton Univ. Press, Princeton, NJ, 1968. MR**0239612 (39:969)****[Mo]**J. Moser,*Analytic surfaces in**and their local hull of holomorphy*, Ann. Acad. Sci. Fenn. Ser. A. I. Math.**10**(1985), 397-410. MR**802502 (87c:32024)****[MW]**J. Moser and S. Webster,*Normal forms for real surfaces in**near complex tangents and hyperbolic surface transformations*, Acta Math.**150**(1983), 255-296. MR**709143 (85c:32034)****[S]**E. L. Stout, Abstract 826-32-09**7**(1986), 174.

Retrieve articles in *Journal of the American Mathematical Society*
with MSC:
32D10,
32E20

Retrieve articles in all journals with MSC: 32D10, 32E20

Additional Information

DOI:
https://doi.org/10.1090/S0894-0347-1991-1094437-0

Article copyright:
© Copyright 1991
American Mathematical Society