Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Flots d'Anosov à distributions stable et instable différentiables

Authors: Yves Benoist, Patrick Foulon and François Labourie
Journal: J. Amer. Math. Soc. 5 (1992), 33-74
MSC: Primary 58F17; Secondary 58F15
MathSciNet review: 1124979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe which Anosov flows on compact manifolds have $ {C^\infty }$ stable and unstable distributions and a contact canonical $ 1$-form: up to finite coverings and up to a $ {C^\infty }$ change of parameters, each of them is isomorphic to the geodesic flow on (the unit tangent bundle of) a compact locally symmetric space of strictly negative curvature.

References [Enhancements On Off] (What's this?)

  • [A] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov. Inst. Math. 90 (1967). MR 0224110 (36:7157)
  • [BFL] Y. Benoist, P. Foulon, and F. Labourie, Flots d'Anosov à distributions de Liapounov différentiables, C. R. Acad. Sci. Paris 311 (1990), 351-354. MR 1071642 (92b:58165)
  • [Bo1] N. Bourbaki, Groupes et algèbres de Lie, ch. 4, 5, 6, Masson, Paris, 1984.
  • [Bo2] -, Groupes et algèbres de Lie, ch. 7 et 8, Hermann, Paris, 1975.
  • [EO] P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1976), 43-110. MR 0336648 (49:1421)
  • [F] R. Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, preprint, 1990. MR 1145615 (93f:58187)
  • [FK1] R. Feres and A. Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory Dynamical Systems 9 (1989), pp. 427-432. MR 1016661 (90k:58167)
  • [FK2] -, Anosov flows with smooth foliations and rigidity of geodesic flows in three dimensional manifolds of negative curvature, Ergodic Theory Dynamical Systems 10 (1990), 657-670. MR 1091420 (92e:58150)
  • [FL] P. Foulon and F. Labourie, Flots d'Anosov à distributions de Liapounov différentiables, C. R. Acad. Sci. Paris 309 (1989), 255-260. MR 1010730 (91b:58189)
  • [Gh] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. Ecole Norm. Sup. (4) 20 (1987), 251-270. MR 911758 (89h:58153)
  • [GHV] W. Greub, S. Halperin, and R. Vanstone, Connection, curvature and homology, vol. III, Academic Press, New York, 1976. MR 0400275 (53:4110)
  • [Gr] M. Gromov, Rigid transformation groups, Géométrie différentielle, (D. Bernard et Y. Choquet-Bruhat, éds.), Travaux en cours, vol. 33, Hermann, Paris, 1988, pp. 65-139. MR 955852 (90d:58173)
  • [HP] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, RI, 1970, pp. 133-164. MR 0271991 (42:6872)
  • [HK] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. I.H.E.S. 72 (1990), 5-61. MR 1087392 (92b:58179)
  • [He] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [Ka] M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory Dynamical Systems 8 (1988), 215-240. MR 951270 (89k:58230)
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York and London, 1963. MR 0152974 (27:2945)
  • [LT] F. Lastaria and F. Tricerri, Some remarks about the curvature of locally homogeneous spaces, preprint.
  • [Mo] G. D. Mostow, Intersections of discrete subgroups with Cartan subgroups, J. Indian Math. Soc. 34 (1970), 203-214. MR 0492074 (58:11228)
  • [Ra] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, Heidelberg, and New York, 1972. MR 0507234 (58:22394a)
  • [Sa] I. Satake, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton, NJ, 1980. MR 591460 (82i:32003)
  • [T] W. Thurston, The geometry and Topology of $ 3$-manifolds, Princeton Lecture Notes (1978).
  • [Wa] G. Warner, Harmonic analysis on semisimple Lie groups, vol. 1, Springer, Berlin, Heidelberg and New York, 1972.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 58F17, 58F15

Retrieve articles in all journals with MSC: 58F17, 58F15

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society