Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



The regularity of mappings with a convex potential

Author: Luis A. Caffarelli
Journal: J. Amer. Math. Soc. 5 (1992), 99-104
MSC: Primary 35B65; Secondary 35A30, 35J60
MathSciNet review: 1124980
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [B] Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 19, 805–808 (French, with English summary). MR 923203
  • [C1] L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129–134. MR 1038359, 10.2307/1971509
  • [C2] Luis A. Caffarelli, Interior 𝑊^{2,𝑝} estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, 10.2307/1971510
  • [C3] Luis A. Caffarelli, Some regularity properties of solutions of Monge Ampère equation, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 965–969. MR 1127042, 10.1002/cpa.3160440809
  • [P] A. V. Pogorelov, Monge-Ampère equations of elliptic type, Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger, P. Noordhoff, Ltd., Groningen, 1964. MR 0180763

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 35B65, 35A30, 35J60

Retrieve articles in all journals with MSC: 35B65, 35A30, 35J60

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society