Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Nilpotent orbits, normality and Hamiltonian group actions


Authors: Ranee Brylinski and Bertram Kostant
Journal: J. Amer. Math. Soc. 7 (1994), 269-298
MSC: Primary 22E46; Secondary 14L30, 22E60, 32M05, 58F06
DOI: https://doi.org/10.1090/S0894-0347-1994-1239505-8
MathSciNet review: 1239505
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [B] R. K. Brylinski, Twisted ideals of the nullcone, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et al., eds.), Birkhäuser, Boston, 1990, pp. 289-316. MR 1103594 (92e:17007)
  • [B-K1] R. Brylinski and B. Kostant, The variety of all invariant symplectic structures on a homogeneous space and normalizers of isotropy groups, Symplectic Geometry and Mathematical Physics (P. Donato et al., eds.), Birkhäuser, Boston, 1991, pp. 80-113. MR 1156535 (94f:22008)
  • [B-K2] -, Nilpotent orbits, normality and Hamiltonian group actions, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 269-275. MR 1119160 (92k:22023)
  • [C] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley-Interscience, Chichester and New York, 1985. MR 794307 (87d:20060)
  • [D] M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), 179-186. MR 0435092 (55:8054)
  • [Ge] S. Gelfand, The Weil representation of a Lie algebra of type $ {G_2}$ and related representations of $ S{L_3}$, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 51-52. (Russian) MR 565098 (81d:17003)
  • [Gr] W. A. Graham, Functions on the universal cover of the principal nilpotent orbit, Invent. Math 108 (1992), 15-27. MR 1156383 (93h:22026)
  • [H] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)
  • [K-S] J. Kimura and M. Sato, A classification of irreducible prehomogeneous spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 0430336 (55:3341)
  • [K1] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex semisimple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 0114875 (22:5693)
  • [K2] -, Lie group representations on polynomial rings, Amer J. Math. 85 (1963), 327-404. MR 0158024 (28:1252)
  • [K3] -, Quantization and unitary representations, Lectures in Modern Analysis and Applications III, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin and New York, 1970, pp. 87-208. MR 0294568 (45:3638)
  • [K4] -, The vanishing of scalar curvature and the minimal representation of $ SO(4,4)$, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et al., eds.), Birkhäuser, Boston, 1990, pp. 85-124. MR 1103588 (92g:22031)
  • [Kr] H. Kraft, Closures of conjugacy classes in $ {G_2}$, J. Algebra 126 (1989), 454-465. MR 1025000 (91a:17020)
  • [Kr-P] H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), 539-602. MR 694606 (85b:14065)
  • [L-S] T. Levasseur and S. P. Smith, Primitive ideals and nilpotent orbits in type $ {G_2}$, J. Algebra 114 (1988), 81-105. MR 931902 (89f:17013)
  • [McG] W. M. McGovern, Dixmier algebras and the orbit method, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes et al., eds.), Birkhäuser, Boston, 1990, pp. 397-416. MR 1103597 (92f:17010)
  • [M] D. Mumford, The red book of varieties and schemes, Lecture Notes in Math., vol. 1358, Springer-Verlag, Berlin and New York, 1988. MR 971985 (89k:14001)
  • [So1] J.-M. Souriau, Structure des systémes dynamiques, Dunod, Paris, 1970. MR 0260238 (41:4866)
  • [So2] -, Sur la variété de Kepler, Sympos. Math., vol. 14, Academic Press, London and New York, 1974, pp. 343-360. MR 0391646 (52:12466)
  • [So3] -, Sur la variété de Kepler, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (Proc. IUTAM-ISIMM Modern Developments in Analytical Mechanics) 117(suppl.) (1983), 369-418.
  • [S-S] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (A. Borel et al., eds.), Lecture Notes in Math., vol. 131, Springer-Verlag, New York, 1970, pp. 167-266. MR 0268192 (42:3091)
  • [T] J. Tits, Espaces homogénes complexes compacts, Comment. Math. Helv. 37 (1962), 111-120. MR 0154299 (27:4248)
  • [V-P] E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972), no. 4, 743-758.
  • [V1] D. A. Vogan, The orbit method and primitive ideals for semisimple Lie algebras, Lie Algebras and Related Topics, CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281-316. MR 832204 (87k:17015)
  • [V2] -, Noncommutative algebras and unitary representations, Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 35-60. MR 974331 (90a:22015)
  • [Z] A. Zahid, Les endomorphismes $ \mathfrak{k}$-finis des modules de Whittaker, Bull. Soc. Math. France 117 (1989), 451-477. MR 1042433 (91h:17010)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 22E46, 14L30, 22E60, 32M05, 58F06

Retrieve articles in all journals with MSC: 22E46, 14L30, 22E60, 32M05, 58F06


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1994-1239505-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society