Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

When does almost free imply free? (For groups, transversals, etc.)


Authors: Menachem Magidor and Saharon Shelah
Journal: J. Amer. Math. Soc. 7 (1994), 769-830
MSC: Primary 03E35; Secondary 03E55, 03E75, 20K27
DOI: https://doi.org/10.1090/S0894-0347-1994-1249391-8
MathSciNet review: 1249391
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the construction of an almost free nonfree Abelian group can be pushed from a regular cardinal $ \kappa $ to $ {\aleph _{\kappa + 1}}$. Hence there are unboundedly many almost free nonfree Abelian groups below the first cardinal fixed point.

We give a sufficient condition for `` $ \kappa $ free implies free'', and then we show, assuming the consistency of infinitely many supercompacts, that one can have a model of ZFC+G.C.H. in which $ {\aleph _{{\omega ^2} + 1}}$ free implies $ {\aleph _{{\omega ^2} + 2}}$ free. Similar construction yields a model in which $ {\aleph _\kappa }$ free implies free for $ \kappa $ the first cardinal fixed point (namely, the first cardinal $ \alpha $ satisfying $ \alpha = {\aleph _\alpha }$). The absolute results about the existence of almost free nonfree groups require only minimal knowledge of set theory. Also, no knowledge of metamathematics is required for reading the section on the combinatorial principle used to show that almost free implies free. The consistency of the combinatorial principle requires acquaintance with forcing techniques.


References [Enhancements On Off] (What's this?)

  • [Ba1] J. Baumgartner, A new class of order types, Ann. Math. Logic 9 (1976), 187-222. MR 0416925 (54:4988)
  • [Ba2] -, Iterated forcing, Surveys in Set Theory (A. Mathias, ed.), London Math. Soc. Lecture Note Ser., no. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1-59. MR 823774 (86m:03005)
  • [Bd] S. Ben-David, On Shelah compactness of cardinals, Israel J. Math. 31 (1978), 34-56; Corrigendum, 394. MR 506381 (80f:03060a)
  • [B-M] M. Burke and M. Magidor, Shelah Pcf theory and its applications, Ann. Pure Appl. Logic 50 (1990), 207-254. MR 1086455 (92f:03053)
  • [Cu-Wo] J. Cummings and H. Woodin, Applications of Radin's forcing (to appear).
  • [Ek] P. Eklof, On the existence of $ \kappa $ free Abelian groups, Proc. Amer. Math. Soc. 47 (1975), 65-72. MR 0379694 (52:599)
  • [Ek-Me] P. Eklof and A. Mekler, Almost free modules, set theoretic methods, North-Holland, Amsterdam, 1990. MR 1055083 (92e:20001)
  • [E-R] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. MR 0081864 (18:458a)
  • [F-W] M. Foreman and W. H. Woodin, The Generalized Continuum Hypothesis can fail everywhere, Ann. of Math. (2) 133 (1991), 1-35. MR 1087344 (91k:03130)
  • [Fu] L. Fuchs, Infinite Abelian groups, Vols. I, II, Academic Press, New York, 1970, 1973. MR 0255673 (41:333)
  • [Gi] M. Gitik, The negation of the singular cardinal hypothesis from $ o(\kappa ) = {\kappa ^{ + + }}$, Ann. Pure Appl. Logic 43 (1989), 209-234. MR 1007865 (90h:03037)
  • [Gr] P. Grifith, Infinite Abelian group theory, Univ. of Chicago Press, Chicago, IL, 1970. MR 0289638 (44:6826)
  • [Hi] G. Higman, Almost free groups, Proc. London Math. Soc. 3 (1951), 284-290. MR 0044519 (13:430d)
  • [Hil1] P. Hill, On the splitting of modules and Abelian groups, Canad. J. Math. 26 (1974), 68-77. MR 0338217 (49:2983)
  • [Hil2] -, On the freeness of Abelian groups, A generalization of Pontryagin's theorem, Bull. Amer. Math. Soc. 76 (1970), 1118-1120. MR 0263919 (41:8518)
  • [Hil3] -, A special criterion for freeness, Sympos. Math. 13 (1974), 311-314. MR 0360874 (50:13321)
  • [Ho] W. Hodges, In singular cardinality locally free algebras are free, Algebra Universalis 12 (1981), 205-220. MR 608664 (82i:08005)
  • [Je] T. J. Jech, Set theory, Academic Press, New York, San Francisco, and London, 1978. MR 506523 (80a:03062)
  • [Jen] R. B. Jensen, The fine structure of the constructible universe, Ann. Math. Logic 4 (1972), 229-308. MR 0309729 (46:8834)
  • [K-M] A. Kanamori and M. Magidor, The development of large cardinals axioms in set theory, Higher Set Theory (G. Muller, ed.), Lecture Notes in Math., vol. 669, Springer-Verlag, Berlin and New York, 1978. MR 520190 (80b:03083)
  • [La] R. Laver, Making the supercompact $ \kappa $ indestructible under $ \kappa $ directed closed forcing, Israel J. Math. 29 (1978), 385-388. MR 0472529 (57:12226)
  • [Ma] M. Magidor, On the singular cardinals problem. I, Israel J. Math. 28 (1977), 1-31. MR 0491183 (58:10449a)
  • [Me] A. Mekler, How to construct almost free groups, Canad. J. Math. 32 (1980), 1206-1228. MR 596105 (82b:20038)
  • [Men] T. K. Menas, A combinatorial property of $ {P_\kappa }(\lambda )$, J. Symbolic Logic 41 (1976), 225-233. MR 0409186 (53:12948)
  • [Mi-Sh] E. C. Milner and S. Shelah, Some theorems on transversals, Infinite and Finite Sets, a Book Dedicated to P. Erdös on His 60th Birthday, North-Holland, Amsterdam, 1975, pp. 1115-1126. MR 0376358 (51:12534)
  • [Sh1] S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), 319-339. MR 0389579 (52:10410)
  • [Sh2] -, On successors of singular cardinals, Logic Colloquium 78 (M. Boffa, D. Van Dallen, and K. McAloon, eds.), North-Holland, Amsterdam, 1979, pp. 357-380. MR 567680 (82d:03079)
  • [Sh3] -, Proper forcing, Lecture Notes in Math., vol. 940, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR 675955 (84h:03002)
  • [Sh4] -, Incompactness in regular cardinals, Notre Dame J. Formal Logic 26 (1985), 195-228. MR 796637 (87f:03095)
  • [Sh5] -, Cardinal arithmetics, Oxford Univ. Press (to appear).
  • [S-R-K] R. M. Solovay, W. N. Rienhardt, and A. Kanamoi, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), 73-116. MR 482431 (80h:03072)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 03E35, 03E55, 03E75, 20K27

Retrieve articles in all journals with MSC: 03E35, 03E55, 03E75, 20K27


Additional Information

DOI: https://doi.org/10.1090/S0894-0347-1994-1249391-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society