Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



On the existence of Maass cusp forms on hyperbolic surfaces with cone points

Author: Christopher M. Judge
Journal: J. Amer. Math. Soc. 8 (1995), 715-759
MSC: Primary 11F72; Secondary 58G25
MathSciNet review: 1273415
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The perturbation theory of the Laplace spectrum of hyperbolic surfaces with conical singularities belonging to a fixed conformal class is developed. As an application, it is shown that the generic such surface with cusps has no Maass cusp forms ($ {L^2}$ eigenfunctions) under specific eigenvalue multiplicity assumptions. It is also shown that eigenvalues depend monotonically on the cone angles. From this, one obtains Neumann eigenvalue monotonicity for geodesic triangles in $ {{\mathbf{H}}^2}$ and a lower bound of $ \frac{1}{2}{\pi ^2}$ for the eigenvalues of `odd' Maass cusp forms associated to Hecke triangle groups.

References [Enhancements On Off] (What's this?)

  • [B] M. S. Berger, Nonlinearity and functional analysis, Academic Press, New York, 1977. MR 0488101 (58:7671)
  • [BJS] L. Bers, F. John, and M. Shechter, Partial differential equations, Amer. Math. Soc., Providence, RI, 1964.
  • [CdV] Y. Colin de Verdiere, Pseudo-Laplacians II, Ann. Inst. Fourier 33 (1983), 87-113. MR 699488 (84k:58222)
  • [CH] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I, Wiley, New York, 1989. MR 1013360 (90k:35001)
  • [DIPS] J.M. Deshouillers, H. Iwaniec, R.S. Phillips, and P. Sarnak, Maass cusp forms, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), 3533-3534. MR 791741 (86m:11024)
  • [Ef] I. Efrat, On the discrete spectrum of certain discrete groups, Bull. Amer. Math. Soc. (N.S.) 24 (1991), 125-130. MR 1053987 (91h:22023)
  • [Er] A. Erdelyi (ed.), Higher transcendental functions: The Bateman manuscript project, Vol. 1, McGraw-Hill, New York, 1953.
  • [G] S. Gelbart, Automorphic forms on adele groups, Princeton Univ. Press, Princeton, NJ, 1975. MR 0379375 (52:280)
  • [GGP] I. M. Gelfand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Academic Press, New York, 1990. MR 1071179 (91g:11052)
  • [GB] L. Greenberg and I. Babuška, A continuous analogue of Sturm sequences in the context of Sturm-Liouville equations, Siam. J. Numer. Anal. 26 (1989), 920-945. MR 1005517 (90g:65111)
  • [H1] D. Hejhal, The Selberg trace formula for $ PSL(2,{\mathbf{R}})$, Vol. II, Lecture Notes in Math., vol. 1001, Springer-Verlag, Berlin and New York, 1983. MR 0439755 (55:12641)
  • [H2] -, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. Amer. Math. Soc. 97 (1992), Number 469. MR 1106989 (93f:11043)
  • [Ji] L. Ji, Degeneration of the pseudo-Laplace operator for hyperbolic Riemann surfaces, J. Differential Geometry 38 (1993), 263-313. MR 1184082 (94g:58235)
  • [J] C. Judge, The variation of constant curvature surfaces with conical singularities, Preprint, 1993.
  • [JZ] L. Ji and S. Zelditch, Hyperbolic cusp forms and spectral simplicity on compact hyperbolic surfaces, Preprint, 1993. MR 1298204 (96c:11055)
  • [K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1980.
  • [La] S. Lang, $ SL(2,{\mathbf{R}})$, Springer-Verlag, New York, 1974. MR 803508 (86j:22018)
  • [Le] N. N. Lebedev, Special functions and their applications, Dover, New York, 1972. MR 0350075 (50:2568)
  • [LP] P. Lax and R. Phillips, Scattering theory for automorphic functions, Princeton Univ. Press, Princeton, NJ, 1976. MR 0562288 (58:27768)
  • [Lu] W. Luo, On the nonvanishing of Rankin-Selberg $ L$-functions, Duke Math. J. 69 (1993), 411-427. MR 1203232 (93m:11040)
  • [O] F.W.J. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [Pe] I. M. Petridis, Scattering theory for automorphic functions and its relation to $ L$-functions, Thesis, Stanford, 1992.
  • [PS1] R.S. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of $ PSL(2,{\mathbf{R}})$, Invent. Math. 80 (1985), 339-364. MR 788414 (86m:11037)
  • [PS2] -, On Weyl's Law for noncompact finite volume surfaces, Comm. Pure. Appl. Math. 38 (1985).
  • [PS3] -, Cusp forms for character varieties, Preprint, 1992.
  • [PS4] -, Automorphic spectrum and Fermi's golden rule, Preprint, 1992.
  • [RN] F. Riesz and B. Sz.-Nagy, Functional analysis, Dover, New York, 1990. MR 1068530 (91g:00002)
  • [Sa1] P. Sarnak, Prime geodesic theorems, Thesis, Stanford, 1980.
  • [Sa2] -, On cusp forms, Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393-407. MR 853570 (87j:11047)
  • [Se1] A. Selberg, Göttingen lectures, 1954.
  • [Se2] -, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [T] A. Terras, Harmonic analysis on symmetric spaces, Vol. I, Springer-Verlag, Berlin and New York, 1985. MR 791406 (87f:22010)
  • [U] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), 1059-1078. MR 0464332 (57:4264)
  • [Wk] A. Winkler, Cusp forms and Hecke groups, J. Reine Angew. Math. 386 (1988), 187-204. MR 936998 (90g:11067)
  • [Wp1] S. Wolpert, Spectral limits for hyperbolic surfaces I, Invent. Math. 108 (1992), 67-89. MR 1156387 (93b:58160)
  • [Wp2] -, Disappearance of cusp forms in special families, Ann. of Math. (to appear).
  • [V] A. B. Venkov, The spectral theory of automorphic functions, Klüwer, Dordrecht, 1990.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC: 11F72, 58G25

Retrieve articles in all journals with MSC: 11F72, 58G25

Additional Information

Keywords: Maass cusp form, embedded eigenvalues, Hecke triangle group, hyperbolic surfaces
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society