Moduli Spaces of Singular Yamabe Metrics

Authors:
Rafe Mazzeo, Daniel Pollack and Karen Uhlenbeck

Journal:
J. Amer. Math. Soc. **9** (1996), 303-344

MSC (1991):
Primary 58D27

DOI:
https://doi.org/10.1090/S0894-0347-96-00208-1

MathSciNet review:
1356375

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Complete, conformally flat metrics of constant positive scalar curvature on the complement of points in the -sphere, , , were constructed by R. Schoen in 1988. We consider the problem of determining the moduli space of all such metrics. All such metrics are asymptotically periodic, and we develop the linear analysis necessary to understand the nonlinear problem. This includes a Fredholm theory and asymptotic regularity theory for the Laplacian on asymptotically periodic manifolds, which is of independent interest. The main result is that the moduli space is a locally real analytic variety of dimension . For a generic set of nearby conformal classes the moduli space is shown to be a -dimensional real analytic manifold. The structure as a real analytic variety is obtained by writing the space as an intersection of a Fredholm pair of infinite dimensional real analytic manifolds.

**[ACF]**Lars Andersson, Piotr T. Chruściel, and Helmut Friedrich,*On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations*, Comm. Math. Phys.**149**(1992), no. 3, 587–612. MR**1186044****[AMc]**Patricio Aviles and Robert C. McOwen,*Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds*, Duke Math. J.**56**(1988), no. 2, 395–398. MR**932852**, https://doi.org/10.1215/S0012-7094-88-05616-5**[AKS]**P. Aviles, N. Korevaar and R. Schoen,*The symmetry of constant scalar curvature metrics near point singularities*, preprint.**[B]**K. Grosse-Brauckmann,*New surfaces of constant mean curvature Math. Z.*(to appear).**[CGS]**Luis A. Caffarelli, Basilis Gidas, and Joel Spruck,*Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth*, Comm. Pure Appl. Math.**42**(1989), no. 3, 271–297. MR**982351**, https://doi.org/10.1002/cpa.3160420304**[D]**C. Delaunay,*Sur la surface de revolution dont la courbure moyenne est constant*, J. Math. Pure Appl.**6**(1841), 309-320.**[Fe]**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[FMc]**David L. Finn and Robert C. McOwen,*Singularities and asymptotics for the equation Δ_{𝑔}𝑢-𝑢^{𝑞}=𝑆𝑢*, Indiana Univ. Math. J.**42**(1993), no. 4, 1487–1523. MR**1266103**, https://doi.org/10.1512/iumj.1993.42.42068**[FM1]**Arthur E. Fischer and Jerrold E. Marsden,*Deformations of the scalar curvature*, Duke Math. J.**42**(1975), no. 3, 519–547. MR**0380907****[FM2]**Arthur E. Fischer and Jerrold E. Marsden,*Linearization stability of nonlinear partial differential equations*, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 219–263. MR**0383456****[Fo1]**R. H. Fowler,*The form near infinity of real continuous solutions of a certain differential equation of the second order*, Quart. J. Pure Appl. Math.**45**(1914), 289--349.**[Fo2]**---,*Further studies of Emden's and similar differential equations*, Quart. J. Math. Oxford Series**2**(1931), 259--287.**[Kap]**Nicolaos Kapouleas,*Complete constant mean curvature surfaces in Euclidean three-space*, Ann. of Math. (2)**131**(1990), no. 2, 239–330. MR**1043269**, https://doi.org/10.2307/1971494

Nicolaos Kapouleas,*Compact constant mean curvature surfaces in Euclidean three-space*, J. Differential Geom.**33**(1991), no. 3, 683–715. MR**1100207****[K]**Tosio Kato,*Perturbation theory for linear operators*, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR**0407617****[Ko]**Osamu Kobayashi,*A differential equation arising from scalar curvature function*, J. Math. Soc. Japan**34**(1982), no. 4, 665–675. MR**669275**, https://doi.org/10.2969/jmsj/03440665**[KK]**Nick Korevaar and Rob Kusner,*The global structure of constant mean curvature surfaces*, Invent. Math.**114**(1993), no. 2, 311–332. MR**1240641**, https://doi.org/10.1007/BF01232673**[KKMS]**Nicholas J. Korevaar, Rob Kusner, William H. Meeks III, and Bruce Solomon,*Constant mean curvature surfaces in hyperbolic space*, Amer. J. Math.**114**(1992), no. 1, 1–43. MR**1147718**, https://doi.org/10.2307/2374738**[KKS]**Nicholas J. Korevaar, Rob Kusner, and Bruce Solomon,*The structure of complete embedded surfaces with constant mean curvature*, J. Differential Geom.**30**(1989), no. 2, 465–503. MR**1010168****[KMP]**R. Kusner, R. Mazzeo and D. Pollack,*The moduli space of complete embedded constant mean curvature surfaces*, Geom. and Functional Analysis (to appear).**[L]**Jacques Lafontaine,*Sur la géométrie d’une généralisation de l’équation différentielle d’Obata*, J. Math. Pures Appl. (9)**62**(1983), no. 1, 63–72 (French). MR**700048****[Li]**André Lichnerowicz,*Propagateurs et commutateurs en relativité générale*, Inst. Hautes Études Sci. Publ. Math.**10**(1961), 56 (French). MR**0157736****[LN]**Charles Loewner and Louis Nirenberg,*Partial differential equations invariant under conformal or projective transformations*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 245–272. MR**0358078****[M1]**Rafe Mazzeo,*Regularity for the singular Yamabe problem*, Indiana Univ. Math. J.**40**(1991), no. 4, 1277–1299. MR**1142715**, https://doi.org/10.1512/iumj.1991.40.40057**[M2]**Rafe Mazzeo,*Elliptic theory of differential edge operators. I*, Comm. Partial Differential Equations**16**(1991), no. 10, 1615–1664. MR**1133743**, https://doi.org/10.1080/03605309108820815**[MP]**--- and F. Pacard,*A new construction of singular solutions for a semilinear elliptic equation*, To appear, J. Differential Geometry.**[MPU]**---, D. Pollack and K. Uhlenbeck,*Connected sum constructions for constant scalar curvature metrics*, Preprint.**[MS]**Rafe Mazzeo and Nathan Smale,*Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere*, J. Differential Geom.**34**(1991), no. 3, 581–621. MR**1139641****[Mc]**Robert C. McOwen,*Prescribed curvature and singularities of conformal metrics on Riemann surfaces*, J. Math. Anal. Appl.**177**(1993), no. 1, 287–298. MR**1224820**, https://doi.org/10.1006/jmaa.1993.1258**[Me]**R. Melrose,*The Atiyah-Patodi-Singer index theorem*, AK Peters Ltd., Wellesley, MA, 1993. CMP**95:17****[O]**Morio Obata,*Certain conditions for a Riemannian manifold to be isometric with a sphere*, J. Math. Soc. Japan**14**(1962), 333–340. MR**0142086**, https://doi.org/10.2969/jmsj/01430333**[Pa]**F. Pacard,*The Yamabe problem on subdomains of even dimensional spheres*, preprint.**[P1]**Daniel Pollack,*Nonuniqueness and high energy solutions for a conformally invariant scalar equation*, Comm. Anal. Geom.**1**(1993), no. 3-4, 347–414. MR**1266473**, https://doi.org/10.4310/CAG.1993.v1.n3.a2**[P2]**Daniel Pollack,*Compactness results for complete metrics of constant positive scalar curvature on subdomains of 𝑆ⁿ*, Indiana Univ. Math. J.**42**(1993), no. 4, 1441–1456. MR**1266101**, https://doi.org/10.1512/iumj.1993.42.42066**[RS]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. I. Functional analysis*, Academic Press, New York-London, 1972. MR**0493419**

Michael Reed and Barry Simon,*Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0493420**

Michael Reed and Barry Simon,*Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0493421****[S1]**Richard Schoen,*Conformal deformation of a Riemannian metric to constant scalar curvature*, J. Differential Geom.**20**(1984), no. 2, 479–495. MR**788292****[S2]**Richard M. Schoen,*The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation*, Comm. Pure Appl. Math.**41**(1988), no. 3, 317–392. MR**929283**, https://doi.org/10.1002/cpa.3160410305**[S3]**M. Giaquinta (ed.),*Topics in calculus of variations*, Lecture Notes in Mathematics, vol. 1365, Springer-Verlag, Berlin, 1989. Lectures given at the Second 1987 C.I.M.E. Session held in Montecatini Terme, July 20–28, 1987. MR**994016****[S4]**Blaine Lawson and Keti Tenenblat (eds.),*Differential geometry*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 52, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. A Symposium in Honor of Manfredo do Carmo. MR**1173028****[SY]**R. Schoen and S.-T. Yau,*Conformally flat manifolds, Kleinian groups and scalar curvature*, Invent. Math.**92**(1988), no. 1, 47–71. MR**931204**, https://doi.org/10.1007/BF01393992**[T]**Clifford Henry Taubes,*Gauge theory on asymptotically periodic 4-manifolds*, J. Differential Geom.**25**(1987), no. 3, 363–430. MR**882829**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
58D27

Retrieve articles in all journals with MSC (1991): 58D27

Additional Information

**Rafe Mazzeo**

Affiliation:
Department of Mathematics, Stanford University, Stanford, California 94305

Email:
mazzeo@math.stanford.edu

**Daniel Pollack**

Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Email:
pollack@math.uchicago.edu

**Karen Uhlenbeck**

Affiliation:
Department of Mathematics, University of Texas, Austin, Texas 78712

Email:
uhlen@math.utexas.edu

DOI:
https://doi.org/10.1090/S0894-0347-96-00208-1

Received by editor(s):
January 20, 1994

Additional Notes:
The first author’s research was supported in part by NSF Young Investigator Award, the Sloan Foundation, NSF grant # DMS9001702, the second author’s research was supported by NSF grant # DMS9022140, and the third author’s research was supported by the Sid Richardson and O’Donnell foundations.

Article copyright:
© Copyright 1996
American Mathematical Society